69 lines
2.5 KiB
Python
69 lines
2.5 KiB
Python
import importlib
|
|
import inspect
|
|
import pkgutil
|
|
import re
|
|
import sys
|
|
import os
|
|
|
|
import torch.nn
|
|
|
|
|
|
# Base class for all other injectors.
|
|
class Injector(torch.nn.Module):
|
|
def __init__(self, opt, env):
|
|
super(Injector, self).__init__()
|
|
self.opt = opt
|
|
self.env = env
|
|
if 'in' in opt.keys():
|
|
self.input = opt['in']
|
|
if 'out' in opt.keys():
|
|
self.output = opt['out']
|
|
|
|
# This should return a dict of new state variables.
|
|
def forward(self, state):
|
|
raise NotImplementedError
|
|
|
|
|
|
def format_injector_name(name):
|
|
# Formats by converting from CamelCase to snake_case and removing trailing "_injector"
|
|
name = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name)
|
|
name = re.sub('([a-z0-9])([A-Z])', r'\1_\2', name).lower()
|
|
return name.replace("_injector", "")
|
|
|
|
|
|
# Works by loading all python modules in the injectors/ directory and sniffing out subclasses of Injector.
|
|
# field will be properly populated.
|
|
def find_registered_injectors(base_path="trainer/injectors"):
|
|
# this has the same modification networks.py has, so be sure to mirror it
|
|
path = os.path.normpath(os.path.join(os.path.dirname(os.path.realpath(__file__)), f'../{base_path}'))
|
|
module_iter = pkgutil.walk_packages([path])
|
|
results = {}
|
|
for mod in module_iter:
|
|
if mod.ispkg:
|
|
EXCLUSION_LIST = []
|
|
if mod.name not in EXCLUSION_LIST:
|
|
results.update(find_registered_injectors(f'{base_path}/{mod.name}'))
|
|
else:
|
|
mod_name = f'{base_path}/{mod.name}'.replace('/', '.')
|
|
importlib.import_module(mod_name)
|
|
classes = inspect.getmembers(sys.modules[mod_name], inspect.isclass)
|
|
for name, obj in classes:
|
|
if 'Injector' in [mro.__name__ for mro in inspect.getmro(obj)]:
|
|
results[format_injector_name(name)] = obj
|
|
return results
|
|
|
|
|
|
class CreateInjectorError(Exception):
|
|
def __init__(self, name, available):
|
|
super().__init__(f'Could not find the specified injector name: {name}. Available injectors:'
|
|
f'{available}')
|
|
|
|
|
|
# Injectors are a way to synthesize data within a step that can then be used (and reused) by loss functions.
|
|
def create_injector(opt_inject, env):
|
|
injectors = find_registered_injectors()
|
|
type = opt_inject['type']
|
|
if type not in injectors.keys():
|
|
raise CreateInjectorError(type, list(injectors.keys()))
|
|
return injectors[opt_inject['type']](opt_inject, env)
|