DL-Art-School/codes/trainer/batch_size_optimizer.py
2022-02-08 23:51:31 -07:00

67 lines
2.3 KiB
Python

import torch
from utils.util import opt_get
def create_batch_size_optimizer(opt_train):
if 'batch_size_optimizer' in opt_train.keys():
if opt_train['batch_size_optimizer']['type'] == 'gradient_direction':
return GradientDirectionOptimizer(opt_train)
return MegabatchBatchSizeOptimizer(opt_train)
# Base class for BatchSizeOptimizers.
class BatchSizeOptimizer:
def focus(self, optimizer):
pass
def should_step(self, it):
raise NotImplementedError
def get_statistics(self):
return {}
# BatchSizeOptimizer that just steps every megabatch.
class MegabatchBatchSizeOptimizer(BatchSizeOptimizer):
def __init__(self, opt_train):
pass
def should_step(self, it):
return True
# BatchSizeOptimizer that uses the gradient direction of a few parameters to determine when to step.
# Very similar to what is described in https://aclanthology.org/2020.acl-main.323.pdf
class GradientDirectionOptimizer(BatchSizeOptimizer):
def __init__(self, opt_train):
self.mbf = opt_train['mega_batch_factor']
self.opt = opt_train['batch_size_optimizer']
self.max_full_batches = opt_get(self.opt, ['max_full_batches'], 10)
self.parameters_to_poll = opt_get(self.opt, ['poll_parameters'], 8)
self.recalculate_directions_every = opt_get(self.opt, ['recalculate_directions_steps'], 1)
self.last_number_iterations = 0
def vector_angle(self, v1, v2):
with torch.no_grad():
v1 = v1.flatten()
v2 = v2.flatten()
v1_norm = (v1 ** 2).sum().sqrt()
v2_norm = (v2 ** 2).sum().sqrt()
angle = torch.arccos((v1 * v2) / (v1_norm * v2_norm))
return angle
def focus(self, optimizer):
optimizer._gradient_direction_optimizer_params = []
optimizer._gradient_direction_optimizer_prior_directions = []
optimizer._gradient_direction_optimizer_prior_grads = []
optimizer._gradient_direction_optimizer_direction_change_magnitudes = []
optimizer._gradient_direction_optimizer_step = 0
self.current_opt = optimizer
def should_step(self, it):
self.last_number_iterations += 1
def get_statistics(self):
return {"last_number_iterations_before_step": self.last_number_iterations}