DL-Art-School/codes/models/archs/StructuredSwitchedGenerator.py
2020-10-13 10:11:10 -06:00

449 lines
24 KiB
Python

import math
import functools
from models.archs.arch_util import MultiConvBlock, ConvGnLelu, ConvGnSilu, ReferenceJoinBlock
from models.archs.SwitchedResidualGenerator_arch import ConfigurableSwitchComputer, gather_2d, SwitchModelBase
from models.archs.SPSR_arch import ImageGradientNoPadding
from torch import nn
import torch
import torch.nn.functional as F
from switched_conv.switched_conv_util import save_attention_to_image_rgb
from switched_conv.switched_conv import compute_attention_specificity
import os
import torchvision
from utils.util import checkpoint
# VGG-style layer with Conv(stride2)->BN->Activation->Conv->BN->Activation
# Doubles the input filter count.
class HalvingProcessingBlock(nn.Module):
def __init__(self, filters, factor=2):
super(HalvingProcessingBlock, self).__init__()
self.bnconv1 = ConvGnSilu(filters, filters, norm=False, bias=False)
self.bnconv2 = ConvGnSilu(filters, int(filters * factor), kernel_size=1, stride=2, norm=True, bias=False)
def forward(self, x):
x = self.bnconv1(x)
return self.bnconv2(x)
class ExpansionBlock2(nn.Module):
def __init__(self, filters_in, filters_out=None, block=ConvGnSilu, factor=2):
super(ExpansionBlock2, self).__init__()
if filters_out is None:
filters_out = int(filters_in / factor)
self.decimate = block(filters_in, filters_out, kernel_size=1, bias=False, activation=True, norm=False)
self.process_passthrough = block(filters_out, filters_out, kernel_size=3, bias=True, activation=True, norm=False)
self.conjoin = block(filters_out*2, filters_out*2, kernel_size=1, bias=False, activation=True, norm=False)
self.reduce = block(filters_out*2, filters_out, kernel_size=1, bias=False, activation=False, norm=True)
# input is the feature signal with shape (b, f, w, h)
# passthrough is the structure signal with shape (b, f/2, w*2, h*2)
# output is conjoined upsample with shape (b, f/2, w*2, h*2)
def forward(self, input, passthrough):
x = F.interpolate(input, scale_factor=2, mode="nearest")
x = self.decimate(x)
p = self.process_passthrough(passthrough)
x = self.conjoin(torch.cat([x, p], dim=1))
return self.reduce(x)
# Basic convolutional upsampling block that uses interpolate.
class UpconvBlock(nn.Module):
def __init__(self, filters_in, filters_out=None, block=ConvGnSilu, norm=True, activation=True, bias=False):
super(UpconvBlock, self).__init__()
self.reduce = block(filters_in, filters_out, kernel_size=1, bias=False, activation=False, norm=False)
self.process = block(filters_out, filters_out, kernel_size=3, bias=bias, activation=activation, norm=norm)
def forward(self, x):
x = self.reduce(x)
x = F.interpolate(x, scale_factor=2, mode="nearest")
return self.process(x)
class QueryKeyMultiplexer(nn.Module):
def __init__(self, nf, multiplexer_channels, embedding_channels=216, reductions=3):
super(QueryKeyMultiplexer, self).__init__()
# Blocks used to create the query
self.input_process = ConvGnSilu(nf, nf, activation=True, norm=False, bias=True)
self.embedding_process = ConvGnSilu(embedding_channels, 128, kernel_size=1, activation=True, norm=False, bias=True)
self.reduction_blocks = nn.ModuleList([HalvingProcessingBlock(int(nf * 1.5 ** i), factor=1.5) for i in range(reductions)])
reduction_filters = int(nf * 1.5 ** reductions)
self.processing_blocks = nn.Sequential(
ConvGnSilu(reduction_filters + 128, reduction_filters + 64, kernel_size=1, activation=True, norm=False, bias=True),
ConvGnSilu(reduction_filters + 64, reduction_filters, kernel_size=1, activation=True, norm=False, bias=False),
ConvGnSilu(reduction_filters, reduction_filters, kernel_size=3, activation=True, norm=True, bias=False),
ConvGnSilu(reduction_filters, reduction_filters, kernel_size=3, activation=True, norm=True, bias=False))
self.expansion_blocks = nn.ModuleList([ExpansionBlock2(int(reduction_filters // (1.5 ** i)), factor=1.5) for i in range(reductions)])
# Blocks used to create the key
self.key_process = ConvGnSilu(nf, nf, kernel_size=1, activation=True, norm=False, bias=False)
# Postprocessing blocks.
self.query_key_combine = ConvGnSilu(nf*2, nf, kernel_size=1, activation=True, norm=False, bias=False)
self.cbl1 = ConvGnSilu(nf, nf // 2, kernel_size=1, norm=True, bias=False, num_groups=4)
self.cbl2 = ConvGnSilu(nf // 2, 1, kernel_size=1, norm=False, bias=False)
def forward(self, x, embedding, transformations):
q = self.input_process(x)
embedding = self.embedding_process(embedding)
reduction_identities = []
for b in self.reduction_blocks:
reduction_identities.append(q)
q = b(q)
q = self.processing_blocks(torch.cat([q, embedding], dim=1))
for i, b in enumerate(self.expansion_blocks):
q = b(q, reduction_identities[-i - 1])
b, t, f, h, w = transformations.shape
k = transformations.view(b * t, f, h, w)
k = self.key_process(k)
q = q.view(b, 1, f, h, w).repeat(1, t, 1, 1, 1).view(b * t, f, h, w)
v = self.query_key_combine(torch.cat([q, k], dim=1))
v = self.cbl1(v)
v = self.cbl2(v)
return v.view(b, t, h, w)
# Computes a linear latent by performing processing on the reference image and returning the filters of a single point,
# which should be centered on the image patch being processed.
#
# Output is base_filters * 1.5^3.
class ReferenceImageBranch(nn.Module):
def __init__(self, base_filters=64):
super(ReferenceImageBranch, self).__init__()
final_filters = int(base_filters*1.5**3)
self.features = nn.Sequential(ConvGnSilu(4, base_filters, kernel_size=7, bias=True),
HalvingProcessingBlock(base_filters, factor=1.5),
HalvingProcessingBlock(int(base_filters*1.5), factor=1.5),
HalvingProcessingBlock(int(base_filters*1.5**2), factor=1.5),
ConvGnSilu(final_filters, final_filters, activation=True, norm=True, bias=False))
# center_point is a [b,2] long tensor describing the center point of where the patch was taken from the reference
# image.
def forward(self, x, center_point):
x = self.features(x)
return gather_2d(x, center_point // 8) # Divide by 8 to scale the center_point down.
class SwitchWithReference(nn.Module):
def __init__(self, nf, num_transforms, init_temperature=10, has_ref=True):
super(SwitchWithReference, self).__init__()
self.nf = nf
self.transformation_counts = num_transforms
multiplx_fn = functools.partial(QueryKeyMultiplexer, nf)
transform_fn = functools.partial(MultiConvBlock, nf, int(nf * 1.25), nf, kernel_size=3, depth=4, weight_init_factor=.1)
if has_ref:
self.ref_join = ReferenceJoinBlock(nf, residual_weight_init_factor=.3, final_norm=False, kernel_size=1, depth=2)
else:
self.ref_join = None
self.switch = ConfigurableSwitchComputer(nf, multiplx_fn,
pre_transform_block=None, transform_block=transform_fn,
attention_norm=True,
transform_count=self.transformation_counts, init_temp=init_temperature,
add_scalable_noise_to_transforms=False, feed_transforms_into_multiplexer=True)
def forward(self, x, mplex_ref=None, ref=None):
if self.ref_join is not None:
branch, ref_std = self.ref_join(x, ref)
return self.switch(branch, identity=x, att_in=(branch, mplex_ref)) + (ref_std,)
else:
return self.switch(x, identity=x, att_in=(x, mplex_ref))
class SSGr1(SwitchModelBase):
def __init__(self, in_nc, out_nc, nf, xforms=8, upscale=4, init_temperature=10, recurrent=False):
super(SSGr1, self).__init__(init_temperature, 10000)
n_upscale = int(math.log(upscale, 2))
self.nf = nf
if recurrent:
self.recurrent = True
self.recurrent_process = ConvGnLelu(in_nc, nf, kernel_size=3, stride=2, norm=False, bias=True, activation=False)
self.recurrent_join = ReferenceJoinBlock(nf, residual_weight_init_factor=.01, final_norm=False, kernel_size=1, depth=3, join=False)
else:
self.recurrent = False
# processing the input embedding
self.reference_embedding = ReferenceImageBranch(nf)
# Feature branch
self.model_fea_conv = ConvGnLelu(in_nc, nf, kernel_size=3, norm=False, activation=False)
self.sw1 = SwitchWithReference(nf, xforms, init_temperature, has_ref=False)
# Grad branch. Note - groupnorm on this branch is REALLY bad. Avoid it like the plague.
self.get_g_nopadding = ImageGradientNoPadding()
self.grad_conv = ConvGnLelu(in_nc, nf, kernel_size=3, norm=False, activation=False, bias=False)
self.sw_grad = SwitchWithReference(nf, xforms // 2, init_temperature, has_ref=True)
self.grad_lr_conv = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=True, bias=True)
self.upsample_grad = UpconvBlock(nf, nf // 2, block=ConvGnLelu, norm=False, activation=True, bias=False)
self.grad_branch_output_conv = ConvGnLelu(nf // 2, out_nc, kernel_size=1, norm=False, activation=False, bias=True)
# Join branch (grad+fea)
self.conjoin_sw = SwitchWithReference(nf, xforms, init_temperature, has_ref=True)
self.final_lr_conv = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=True, bias=True)
self.upsample = UpconvBlock(nf, nf // 2, block=ConvGnLelu, norm=False, activation=True, bias=True)
self.final_hr_conv1 = ConvGnLelu(nf // 2, nf // 2, kernel_size=3, norm=False, activation=False, bias=True)
self.final_hr_conv2 = ConvGnLelu(nf // 2, out_nc, kernel_size=3, norm=False, activation=False, bias=False)
self.switches = [self.sw1.switch, self.sw_grad.switch, self.conjoin_sw.switch]
def forward(self, x, ref, ref_center, save_attentions=True, recurrent=None):
# The attention_maps debugger outputs <x>. Save that here.
self.lr = x.detach().cpu()
# If we're not saving attention, we also shouldn't be updating the attention norm. This is because the attention
# norm should only be getting updates with new data, not recurrent generator sampling.
for sw in self.switches:
sw.set_update_attention_norm(save_attentions)
x_grad = self.get_g_nopadding(x)
ref_code = checkpoint(self.reference_embedding, ref, ref_center)
ref_embedding = ref_code.view(-1, ref_code.shape[1], 1, 1).repeat(1, 1, x.shape[2] // 8, x.shape[3] // 8)
x = self.model_fea_conv(x)
if self.recurrent:
rec = self.recurrent_process(recurrent)
x, recurrent_join_std = self.recurrent_join(x, rec)
else:
recurrent_join_std = 0
x1, a1 = checkpoint(self.sw1, x, ref_embedding)
x_grad = self.grad_conv(x_grad)
x_grad, a3, grad_fea_std = checkpoint(self.sw_grad, x_grad, ref_embedding, x1)
x_grad = checkpoint(self.grad_lr_conv, x_grad)
x_grad_out = checkpoint(self.upsample_grad, x_grad)
x_grad_out = checkpoint(self.grad_branch_output_conv, x_grad_out)
x_out, a4, fea_grad_std = checkpoint(self.conjoin_sw, x1, ref_embedding, x_grad)
x_out = checkpoint(self.final_lr_conv, x_out)
x_out = checkpoint(self.upsample, x_out)
x_out = checkpoint(self.final_hr_conv2, x_out)
if save_attentions:
self.attentions = [a1, a3, a4]
self.grad_fea_std = grad_fea_std.detach().cpu()
self.fea_grad_std = fea_grad_std.detach().cpu()
return x_grad_out, x_out, x_grad
class StackedSwitchGenerator(SwitchModelBase):
def __init__(self, in_nc, out_nc, nf, xforms=8, upscale=4, init_temperature=10):
super(StackedSwitchGenerator, self).__init__(init_temperature, 10000)
n_upscale = int(math.log(upscale, 2))
self.nf = nf
# processing the input embedding
self.reference_embedding = ReferenceImageBranch(nf)
# Feature branch
self.model_fea_conv = ConvGnLelu(in_nc, nf, kernel_size=3, norm=False, activation=False)
self.sw1 = SwitchWithReference(nf, xforms, init_temperature, has_ref=False)
self.sw2 = SwitchWithReference(nf, xforms, init_temperature, has_ref=False)
self.sw3 = SwitchWithReference(nf, xforms, init_temperature, has_ref=False)
self.switches = [self.sw1.switch, self.sw2.switch, self.sw3.switch]
self.final_lr_conv = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=True, bias=True)
self.upsample = UpconvBlock(nf, nf // 2, block=ConvGnLelu, norm=False, activation=True, bias=True)
self.final_hr_conv1 = ConvGnLelu(nf // 2, nf // 2, kernel_size=3, norm=False, activation=False, bias=True)
self.final_hr_conv2 = ConvGnLelu(nf // 2, out_nc, kernel_size=3, norm=False, activation=False, bias=False)
def forward(self, x, ref, ref_center, save_attentions=True):
# The attention_maps debugger outputs <x>. Save that here.
self.lr = x.detach().cpu()
ref_code = checkpoint(self.reference_embedding, ref, ref_center)
ref_embedding = ref_code.view(-1, ref_code.shape[1], 1, 1).repeat(1, 1, x.shape[2] // 8, x.shape[3] // 8)
x = self.model_fea_conv(x)
x1, a1 = checkpoint(self.sw1, x, ref_embedding)
x2, a2 = checkpoint(self.sw2, x1, ref_embedding)
x3, a3 = checkpoint(self.sw3, x2, ref_embedding)
x_out = checkpoint(self.final_lr_conv, x3)
x_out = checkpoint(self.upsample, x_out)
x_out = checkpoint(self.final_hr_conv2, x_out)
if save_attentions:
self.attentions = [a1, a3, a3]
return x_out,
class SSGDeep(SwitchModelBase):
def __init__(self, in_nc, out_nc, nf, xforms=8, upscale=4, init_temperature=10, recurrent=False):
super(SSGDeep, self).__init__(init_temperature, 10000)
n_upscale = int(math.log(upscale, 2))
self.nf = nf
# processing the input embedding
if recurrent:
self.recurrent = True
self.recurrent_process = ConvGnLelu(in_nc, nf, kernel_size=3, stride=2, norm=False, bias=True, activation=False)
self.recurrent_join = ReferenceJoinBlock(nf, residual_weight_init_factor=.01, final_norm=False, kernel_size=1, depth=3, join=False)
else:
self.recurrent = False
self.reference_embedding = ReferenceImageBranch(nf)
# Feature branch
self.model_fea_conv = ConvGnLelu(in_nc, nf, kernel_size=7, norm=False, activation=False)
self.sw1 = SwitchWithReference(nf, xforms, init_temperature, has_ref=False)
self.sw2 = SwitchWithReference(nf, xforms, init_temperature, has_ref=False)
# Grad branch. Note - groupnorm on this branch is REALLY bad. Avoid it like the plague.
self.get_g_nopadding = ImageGradientNoPadding()
self.grad_conv = ConvGnLelu(in_nc, nf, kernel_size=7, norm=False, activation=False, bias=False)
self.sw_grad = SwitchWithReference(nf, xforms // 2, init_temperature, has_ref=True)
self.grad_lr_conv = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=True, bias=True)
self.upsample_grad = UpconvBlock(nf, nf // 2, block=ConvGnLelu, norm=False, activation=True, bias=False)
self.grad_branch_output_conv = ConvGnLelu(nf // 2, out_nc, kernel_size=1, norm=False, activation=False, bias=True)
# Join branch (grad+fea)
self.conjoin_sw = SwitchWithReference(nf, xforms, init_temperature, has_ref=True)
self.sw4 = SwitchWithReference(nf, xforms, init_temperature, has_ref=False)
self.final_lr_conv = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=True, bias=True)
self.upsample = UpconvBlock(nf, nf // 2, block=ConvGnLelu, norm=False, activation=True, bias=True)
self.final_hr_conv1 = ConvGnLelu(nf // 2, nf // 2, kernel_size=3, norm=False, activation=False, bias=True)
self.final_hr_conv2 = ConvGnLelu(nf // 2, out_nc, kernel_size=3, norm=False, activation=False, bias=False)
self.switches = [self.sw1.switch, self.sw2.switch, self.sw_grad.switch, self.conjoin_sw.switch, self.sw4.switch]
def forward(self, x, ref, ref_center, save_attentions=True, recurrent=None):
# The attention_maps debugger outputs <x>. Save that here.
self.lr = x.detach().cpu()
# If we're not saving attention, we also shouldn't be updating the attention norm. This is because the attention
# norm should only be getting updates with new data, not recurrent generator sampling.
for sw in self.switches:
sw.set_update_attention_norm(save_attentions)
x_grad = self.get_g_nopadding(x)
ref_code = checkpoint(self.reference_embedding, ref, ref_center)
ref_embedding = ref_code.view(-1, ref_code.shape[1], 1, 1).repeat(1, 1, x.shape[2] // 8, x.shape[3] // 8)
x = self.model_fea_conv(x)
if self.recurrent:
rec = self.recurrent_process(recurrent)
x, recurrent_std = self.recurrent_join(x, rec)
x1, a1 = checkpoint(self.sw1, x, ref_embedding)
x2, a2 = checkpoint(self.sw2, x1, ref_embedding)
x_grad = self.grad_conv(x_grad)
x_grad, a3, grad_fea_std = checkpoint(self.sw_grad, x_grad, ref_embedding, x1)
x_grad = checkpoint(self.grad_lr_conv, x_grad)
x_grad_out = checkpoint(self.upsample_grad, x_grad)
x_grad_out = checkpoint(self.grad_branch_output_conv, x_grad_out)
x3, a4, fea_grad_std = checkpoint(self.conjoin_sw, x2, ref_embedding, x_grad)
x_out, a5 = checkpoint(self.sw4, x3, ref_embedding)
x_out = checkpoint(self.final_lr_conv, x_out)
x_out = checkpoint(self.upsample, x_out)
x_out = checkpoint(self.final_hr_conv2, x_out)
if save_attentions:
self.attentions = [a1, a2, a3, a4, a5]
self.grad_fea_std = grad_fea_std.detach().cpu()
self.fea_grad_std = fea_grad_std.detach().cpu()
return x_grad_out, x_out
class StackedSwitchGenerator5Layer(SwitchModelBase):
def __init__(self, in_nc, out_nc, nf, xforms=8, upscale=4, init_temperature=10):
super(StackedSwitchGenerator5Layer, self).__init__(init_temperature, 10000)
n_upscale = int(math.log(upscale, 2))
self.nf = nf
# processing the input embedding
self.reference_embedding = ReferenceImageBranch(nf)
# Feature branch
self.model_fea_conv = ConvGnLelu(in_nc, nf, kernel_size=3, norm=False, activation=False)
self.sw1 = SwitchWithReference(nf, xforms, init_temperature, has_ref=False)
self.sw2 = SwitchWithReference(nf, xforms // 2, init_temperature, has_ref=False)
self.sw3 = SwitchWithReference(nf, xforms // 2, init_temperature, has_ref=False)
self.sw4 = SwitchWithReference(nf, xforms // 2, init_temperature, has_ref=False)
self.sw5 = SwitchWithReference(nf, xforms, init_temperature, has_ref=False)
self.switches = [self.sw1.switch, self.sw2.switch, self.sw3.switch, self.sw4.switch, self.sw5.switch]
self.final_lr_conv = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=True, bias=True)
self.upsample = UpconvBlock(nf, nf // 2, block=ConvGnLelu, norm=False, activation=True, bias=True)
self.final_hr_conv1 = ConvGnLelu(nf // 2, nf // 2, kernel_size=3, norm=False, activation=False, bias=True)
self.final_hr_conv2 = ConvGnLelu(nf // 2, out_nc, kernel_size=3, norm=False, activation=False, bias=False)
def forward(self, x, ref, ref_center, save_attentions=True):
# The attention_maps debugger outputs <x>. Save that here.
self.lr = x.detach().cpu()
# If we're not saving attention, we also shouldn't be updating the attention norm. This is because the attention
# norm should only be getting updates with new data, not recurrent generator sampling.
for sw in self.switches:
sw.set_update_attention_norm(save_attentions)
ref_code = checkpoint(self.reference_embedding, ref, ref_center)
ref_embedding = ref_code.view(-1, ref_code.shape[1], 1, 1).repeat(1, 1, x.shape[2] // 8, x.shape[3] // 8)
x = self.model_fea_conv(x)
x1, a1 = checkpoint(self.sw1, x, ref_embedding)
x2, a2 = checkpoint(self.sw2, x1, ref_embedding)
x3, a3 = checkpoint(self.sw3, x2, ref_embedding)
x4, a4 = checkpoint(self.sw4, x3, ref_embedding)
x5, a5 = checkpoint(self.sw5, x4, ref_embedding)
x_out = checkpoint(self.final_lr_conv, x5)
x_out = checkpoint(self.upsample, x_out)
x_out = checkpoint(self.final_hr_conv2, x_out)
if save_attentions:
self.attentions = [a1, a3, a3, a4, a5]
return x_out,
class StackedSwitchGenerator2xTeco(SwitchModelBase):
def __init__(self, nf, xforms=8, init_temperature=10):
super(StackedSwitchGenerator2xTeco, self).__init__(init_temperature, 10000)
self.nf = nf
# processing the input embedding
self.reference_embedding = ReferenceImageBranch(nf)
# Feature branch
self.model_fea_conv = ConvGnLelu(3, nf, kernel_size=7, norm=False, activation=False, bias=True)
self.model_recurrent_conv = ConvGnLelu(3, nf, kernel_size=3, stride=2, norm=False, activation=False, bias=True)
self.model_fea_recurrent_combine = ConvGnLelu(nf*2, nf, 1, activation=False, norm=False, bias=False)
self.sw1 = SwitchWithReference(nf, xforms, init_temperature, has_ref=False)
self.sw2 = SwitchWithReference(nf, xforms // 2, init_temperature, has_ref=False)
self.sw3 = SwitchWithReference(nf, xforms // 2, init_temperature, has_ref=False)
self.sw4 = SwitchWithReference(nf, xforms // 2, init_temperature, has_ref=False)
self.sw5 = SwitchWithReference(nf, xforms, init_temperature, has_ref=False)
self.switches = [self.sw1.switch, self.sw2.switch, self.sw3.switch, self.sw4.switch, self.sw5.switch]
self.final_lr_conv = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=True, bias=True)
self.upsample = UpconvBlock(nf, nf // 2, block=ConvGnLelu, norm=False, activation=True, bias=True)
self.final_hr_conv1 = ConvGnLelu(nf // 2, nf // 2, kernel_size=3, norm=False, activation=False, bias=True)
self.final_hr_conv2 = ConvGnLelu(nf // 2, 3, kernel_size=3, norm=False, activation=False, bias=False)
def forward(self, x, recurrent, ref, ref_center, save_attentions=True):
# The attention_maps debugger outputs <x>. Save that here.
self.lr = x.detach().cpu()
# If we're not saving attention, we also shouldn't be updating the attention norm. This is because the attention
# norm should only be getting updates with new data, not recurrent generator sampling.
for sw in self.switches:
sw.set_update_attention_norm(save_attentions)
ref_code = checkpoint(self.reference_embedding, ref, ref_center)
ref_embedding = ref_code.view(-1, ref_code.shape[1], 1, 1).repeat(1, 1, x.shape[2] // 8, x.shape[3] // 8)
x = self.model_fea_conv(x)
rec = self.model_recurrent_conv(recurrent)
x = self.model_fea_recurrent_combine(torch.cat([x, rec], dim=1))
x1, a1 = checkpoint(self.sw1, x, ref_embedding)
x2, a2 = checkpoint(self.sw2, x1, ref_embedding)
x3, a3 = checkpoint(self.sw3, x2, ref_embedding)
x4, a4 = checkpoint(self.sw4, x3, ref_embedding)
x5, a5 = checkpoint(self.sw5, x4, ref_embedding)
x_out = checkpoint(self.final_lr_conv, x5)
x_out = checkpoint(self.upsample, x_out)
x_out = checkpoint(self.final_hr_conv2, x_out)
if save_attentions:
self.attentions = [a1, a3, a3, a4, a5]
return x_out,