8a4eb8241d
Operates on top of a pre-trained SpineNET backbone (trained on CoCo 2017 with RetinaNet) This variant is extremely shallow.
330 lines
17 KiB
Python
330 lines
17 KiB
Python
import torch
|
|
from torch import nn
|
|
from switched_conv import BareConvSwitch, compute_attention_specificity
|
|
import torch.nn.functional as F
|
|
import functools
|
|
from collections import OrderedDict
|
|
from models.archs.arch_util import initialize_weights, ConvBnRelu, ConvBnLelu, ConvBnSilu
|
|
from models.archs.RRDBNet_arch import ResidualDenseBlock_5C
|
|
from models.archs.spinenet_arch import SpineNet
|
|
from switched_conv_util import save_attention_to_image
|
|
|
|
|
|
class MultiConvBlock(nn.Module):
|
|
def __init__(self, filters_in, filters_mid, filters_out, kernel_size, depth, scale_init=1, bn=False):
|
|
assert depth >= 2
|
|
super(MultiConvBlock, self).__init__()
|
|
self.noise_scale = nn.Parameter(torch.full((1,), fill_value=.01))
|
|
self.bnconvs = nn.ModuleList([ConvBnLelu(filters_in, filters_mid, kernel_size, bn=bn, bias=False)] +
|
|
[ConvBnLelu(filters_mid, filters_mid, kernel_size, bn=bn, bias=False) for i in range(depth-2)] +
|
|
[ConvBnLelu(filters_mid, filters_out, kernel_size, lelu=False, bn=False, bias=False)])
|
|
self.scale = nn.Parameter(torch.full((1,), fill_value=scale_init))
|
|
self.bias = nn.Parameter(torch.zeros(1))
|
|
|
|
def forward(self, x, noise=None):
|
|
if noise is not None:
|
|
noise = noise * self.noise_scale
|
|
x = x + noise
|
|
for m in self.bnconvs:
|
|
x = m.forward(x)
|
|
return x * self.scale + self.bias
|
|
|
|
|
|
# VGG-style layer with Conv(stride2)->BN->Activation->Conv->BN->Activation
|
|
# Doubles the input filter count.
|
|
class HalvingProcessingBlock(nn.Module):
|
|
def __init__(self, filters):
|
|
super(HalvingProcessingBlock, self).__init__()
|
|
self.bnconv1 = ConvBnLelu(filters, filters * 2, stride=2, bn=False, bias=False)
|
|
self.bnconv2 = ConvBnLelu(filters * 2, filters * 2, bn=True, bias=False)
|
|
|
|
def forward(self, x):
|
|
x = self.bnconv1(x)
|
|
return self.bnconv2(x)
|
|
|
|
|
|
# Creates a nested series of convolutional blocks. Each block processes the input data in-place and adds
|
|
# filter_growth filters. Return is (nn.Sequential, ending_filters)
|
|
def create_sequential_growing_processing_block(filters_init, filter_growth, num_convs):
|
|
convs = []
|
|
current_filters = filters_init
|
|
for i in range(num_convs):
|
|
convs.append(ConvBnSilu(current_filters, current_filters + filter_growth, bn=True, bias=False))
|
|
current_filters += filter_growth
|
|
return nn.Sequential(*convs), current_filters
|
|
|
|
|
|
class ConvBasisMultiplexer(nn.Module):
|
|
def __init__(self, input_channels, base_filters, growth, reductions, processing_depth, multiplexer_channels, use_bn=True):
|
|
super(ConvBasisMultiplexer, self).__init__()
|
|
self.filter_conv = ConvBnSilu(input_channels, base_filters, bias=True)
|
|
self.reduction_blocks = nn.Sequential(OrderedDict([('block%i:' % (i,), HalvingProcessingBlock(base_filters * 2 ** i)) for i in range(reductions)]))
|
|
reduction_filters = base_filters * 2 ** reductions
|
|
self.processing_blocks, self.output_filter_count = create_sequential_growing_processing_block(reduction_filters, growth, processing_depth)
|
|
|
|
gap = self.output_filter_count - multiplexer_channels
|
|
# Hey silly - if you're going to interpolate later, do it here instead. Then add some processing layers to let the model adjust it properly.
|
|
self.cbl1 = ConvBnSilu(self.output_filter_count, self.output_filter_count - (gap // 2), bn=use_bn, bias=False)
|
|
self.cbl2 = ConvBnSilu(self.output_filter_count - (gap // 2), self.output_filter_count - (3 * gap // 4), bn=use_bn, bias=False)
|
|
self.cbl3 = ConvBnSilu(self.output_filter_count - (3 * gap // 4), multiplexer_channels, bias=True)
|
|
|
|
def forward(self, x):
|
|
x = self.filter_conv(x)
|
|
x = self.reduction_blocks(x)
|
|
x = self.processing_blocks(x)
|
|
x = self.cbl1(x)
|
|
x = self.cbl2(x)
|
|
x = self.cbl3(x)
|
|
return x
|
|
|
|
|
|
class CachedBackboneWrapper:
|
|
def __init__(self, backbone: nn.Module):
|
|
self.backbone = backbone
|
|
|
|
def __call__(self, *args):
|
|
self.cache = self.backbone(*args)
|
|
return self.cache
|
|
|
|
def get_forward_result(self):
|
|
return self.cache
|
|
|
|
|
|
class BackboneMultiplexer(nn.Module):
|
|
def __init__(self, backbone: CachedBackboneWrapper, transform_count):
|
|
super(BackboneMultiplexer, self).__init__()
|
|
self.backbone = backbone
|
|
self.proc = nn.Sequential(ConvBnSilu(256, 256, kernel_size=3, bias=True),
|
|
ConvBnSilu(256, 256, kernel_size=3, bias=False))
|
|
self.up1 = nn.Sequential(ConvBnSilu(256, 128, kernel_size=3, bias=False, bn=False, silu=False),
|
|
ConvBnSilu(128, 128, kernel_size=3, bias=False))
|
|
self.up2 = nn.Sequential(ConvBnSilu(128, 64, kernel_size=3, bias=False, bn=False, silu=False),
|
|
ConvBnSilu(64, 64, kernel_size=3, bias=False))
|
|
self.final = ConvBnSilu(64, transform_count, bias=False, bn=False, silu=False)
|
|
|
|
def forward(self, x):
|
|
spine = self.backbone.get_forward_result()
|
|
feat = self.proc(spine[0])
|
|
feat = self.up1(F.interpolate(feat, scale_factor=2, mode="nearest"))
|
|
feat = self.up2(F.interpolate(feat, scale_factor=2, mode="nearest"))
|
|
return self.final(feat)
|
|
|
|
|
|
class ConfigurableSwitchComputer(nn.Module):
|
|
def __init__(self, base_filters, multiplexer_net, pre_transform_block, transform_block, transform_count, init_temp=20,
|
|
enable_negative_transforms=False, add_scalable_noise_to_transforms=False, init_scalar=1):
|
|
super(ConfigurableSwitchComputer, self).__init__()
|
|
self.enable_negative_transforms = enable_negative_transforms
|
|
|
|
tc = transform_count
|
|
if self.enable_negative_transforms:
|
|
tc = transform_count * 2
|
|
self.multiplexer = multiplexer_net(tc)
|
|
|
|
self.pre_transform = pre_transform_block()
|
|
self.transforms = nn.ModuleList([transform_block() for _ in range(transform_count)])
|
|
self.add_noise = add_scalable_noise_to_transforms
|
|
self.noise_scale = nn.Parameter(torch.full((1,), float(1e-3)))
|
|
|
|
# And the switch itself, including learned scalars
|
|
self.switch = BareConvSwitch(initial_temperature=init_temp)
|
|
self.switch_scale = nn.Parameter(torch.full((1,), float(init_scalar)))
|
|
self.post_switch_conv = ConvBnLelu(base_filters, base_filters, bn=False, bias=False)
|
|
# The post_switch_conv gets a near-zero scale. The network can decide to magnify it (or not) depending on its needs.
|
|
self.psc_scale = nn.Parameter(torch.full((1,), float(1e-3)))
|
|
self.bias = nn.Parameter(torch.zeros(1))
|
|
|
|
def forward(self, x, output_attention_weights=False):
|
|
identity = x
|
|
if self.add_noise:
|
|
rand_feature = torch.randn_like(x) * self.noise_scale
|
|
x = x + rand_feature
|
|
|
|
x = self.pre_transform(x)
|
|
xformed = [t.forward(x) for t in self.transforms]
|
|
if self.enable_negative_transforms:
|
|
xformed.extend([-t for t in xformed])
|
|
|
|
m = self.multiplexer(identity)
|
|
# Interpolate the multiplexer across the entire shape of the image.
|
|
m = F.interpolate(m, size=xformed[0].shape[2:], mode='nearest')
|
|
|
|
outputs, attention = self.switch(xformed, m, True)
|
|
outputs = identity + outputs * self.switch_scale
|
|
outputs = identity + self.post_switch_conv(outputs) * self.psc_scale
|
|
outputs = outputs + self.bias
|
|
if output_attention_weights:
|
|
return outputs, attention
|
|
else:
|
|
return outputs
|
|
|
|
def set_temperature(self, temp):
|
|
self.switch.set_attention_temperature(temp)
|
|
|
|
|
|
class ConfigurableSwitchedResidualGenerator2(nn.Module):
|
|
def __init__(self, switch_filters, switch_growths, switch_reductions, switch_processing_layers, trans_counts, trans_kernel_sizes,
|
|
trans_layers, transformation_filters, initial_temp=20, final_temperature_step=50000, heightened_temp_min=1,
|
|
heightened_final_step=50000, upsample_factor=1, enable_negative_transforms=False,
|
|
add_scalable_noise_to_transforms=False):
|
|
super(ConfigurableSwitchedResidualGenerator2, self).__init__()
|
|
switches = []
|
|
self.initial_conv = ConvBnLelu(3, transformation_filters, bn=False, lelu=False, bias=True)
|
|
self.sw_conv = ConvBnLelu(transformation_filters, transformation_filters, lelu=False, bias=True)
|
|
self.upconv1 = ConvBnLelu(transformation_filters, transformation_filters, bn=False, bias=True)
|
|
self.upconv2 = ConvBnLelu(transformation_filters, transformation_filters, bn=False, bias=True)
|
|
self.hr_conv = ConvBnLelu(transformation_filters, transformation_filters, bn=False, bias=True)
|
|
self.final_conv = ConvBnLelu(transformation_filters, 3, bn=False, lelu=False, bias=True)
|
|
for filters, growth, sw_reduce, sw_proc, trans_count, kernel, layers in zip(switch_filters, switch_growths, switch_reductions, switch_processing_layers, trans_counts, trans_kernel_sizes, trans_layers):
|
|
multiplx_fn = functools.partial(ConvBasisMultiplexer, transformation_filters, filters, growth, sw_reduce, sw_proc, trans_count)
|
|
switches.append(ConfigurableSwitchComputer(transformation_filters, multiplx_fn,
|
|
pre_transform_block=functools.partial(ConvBnLelu, transformation_filters, transformation_filters, bn=False, bias=False),
|
|
transform_block=functools.partial(MultiConvBlock, transformation_filters, transformation_filters + growth, transformation_filters, kernel_size=kernel, depth=layers),
|
|
transform_count=trans_count, init_temp=initial_temp, enable_negative_transforms=enable_negative_transforms,
|
|
add_scalable_noise_to_transforms=add_scalable_noise_to_transforms, init_scalar=.1))
|
|
|
|
self.switches = nn.ModuleList(switches)
|
|
self.transformation_counts = trans_counts
|
|
self.init_temperature = initial_temp
|
|
self.final_temperature_step = final_temperature_step
|
|
self.heightened_temp_min = heightened_temp_min
|
|
self.heightened_final_step = heightened_final_step
|
|
self.attentions = None
|
|
self.upsample_factor = upsample_factor
|
|
assert self.upsample_factor == 2 or self.upsample_factor == 4
|
|
|
|
def forward(self, x):
|
|
x = self.initial_conv(x)
|
|
|
|
self.attentions = []
|
|
for i, sw in enumerate(self.switches):
|
|
x, att = sw.forward(x, True)
|
|
self.attentions.append(att)
|
|
|
|
x = self.upconv1(F.interpolate(x, scale_factor=2, mode="nearest"))
|
|
if self.upsample_factor > 2:
|
|
x = F.interpolate(x, scale_factor=2, mode="nearest")
|
|
x = self.upconv2(x)
|
|
return self.final_conv(self.hr_conv(x)),
|
|
|
|
def set_temperature(self, temp):
|
|
[sw.set_temperature(temp) for sw in self.switches]
|
|
|
|
def update_for_step(self, step, experiments_path='.'):
|
|
if self.attentions:
|
|
temp = max(1, int(self.init_temperature * (self.final_temperature_step - step) / self.final_temperature_step))
|
|
if temp == 1 and self.heightened_final_step and self.heightened_final_step != 1:
|
|
# Once the temperature passes (1) it enters an inverted curve to match the linear curve from above.
|
|
# without this, the attention specificity "spikes" incredibly fast in the last few iterations.
|
|
h_steps_total = self.heightened_final_step - self.final_temperature_step
|
|
h_steps_current = min(step - self.final_temperature_step, h_steps_total)
|
|
# The "gap" will represent the steps that need to be traveled as a linear function.
|
|
h_gap = 1 / self.heightened_temp_min
|
|
temp = h_gap * h_steps_current / h_steps_total
|
|
# Invert temperature to represent reality on this side of the curve
|
|
temp = 1 / temp
|
|
self.set_temperature(temp)
|
|
if step % 50 == 0:
|
|
[save_attention_to_image(experiments_path, self.attentions[i], self.transformation_counts[i], step, "a%i" % (i+1,)) for i in range(len(self.switches))]
|
|
|
|
def get_debug_values(self, step):
|
|
temp = self.switches[0].switch.temperature
|
|
mean_hists = [compute_attention_specificity(att, 2) for att in self.attentions]
|
|
means = [i[0] for i in mean_hists]
|
|
hists = [i[1].clone().detach().cpu().flatten() for i in mean_hists]
|
|
val = {"switch_temperature": temp}
|
|
for i in range(len(means)):
|
|
val["switch_%i_specificity" % (i,)] = means[i]
|
|
val["switch_%i_histogram" % (i,)] = hists[i]
|
|
return val
|
|
|
|
|
|
class Interpolate(nn.Module):
|
|
def __init__(self, factor):
|
|
super(Interpolate, self).__init__()
|
|
self.factor = factor
|
|
|
|
def forward(self, x):
|
|
return F.interpolate(x, scale_factor=self.factor)
|
|
|
|
|
|
class ConfigurableSwitchedResidualGenerator3(nn.Module):
|
|
def __init__(self, base_filters, trans_count, initial_temp=20, final_temperature_step=50000,
|
|
heightened_temp_min=1,
|
|
heightened_final_step=50000, upsample_factor=4):
|
|
super(ConfigurableSwitchedResidualGenerator3, self).__init__()
|
|
self.initial_conv = ConvBnLelu(3, base_filters, bn=False, lelu=False, bias=True)
|
|
self.sw_conv = ConvBnLelu(base_filters, base_filters, lelu=False, bias=True)
|
|
self.upconv1 = ConvBnLelu(base_filters, base_filters, bn=False, bias=True)
|
|
self.upconv2 = ConvBnLelu(base_filters, base_filters, bn=False, bias=True)
|
|
self.hr_conv = ConvBnLelu(base_filters, base_filters, bn=False, bias=True)
|
|
self.final_conv = ConvBnLelu(base_filters, 3, bn=False, lelu=False, bias=True)
|
|
|
|
self.backbone = SpineNet('49', in_channels=3, use_input_norm=True)
|
|
for p in self.backbone.parameters(recurse=True):
|
|
p.requires_grad = False
|
|
self.backbone_wrapper = CachedBackboneWrapper(self.backbone)
|
|
multiplx_fn = functools.partial(BackboneMultiplexer, self.backbone_wrapper)
|
|
pretransform_fn = functools.partial(nn.Sequential, ConvBnLelu(base_filters, base_filters, kernel_size=3, bn=False, lelu=False, bias=False))
|
|
transform_fn = functools.partial(MultiConvBlock, base_filters, int(base_filters * 1.5), base_filters, kernel_size=3, depth=4)
|
|
self.switch = ConfigurableSwitchComputer(base_filters, multiplx_fn, pretransform_fn, transform_fn, trans_count, init_temp=initial_temp,
|
|
enable_negative_transforms=False, add_scalable_noise_to_transforms=True, init_scalar=.1)
|
|
|
|
self.transformation_counts = trans_count
|
|
self.init_temperature = initial_temp
|
|
self.final_temperature_step = final_temperature_step
|
|
self.heightened_temp_min = heightened_temp_min
|
|
self.heightened_final_step = heightened_final_step
|
|
self.attentions = None
|
|
self.upsample_factor = upsample_factor
|
|
self.backbone_forward = None
|
|
|
|
def get_forward_results(self):
|
|
return self.backbone_forward
|
|
|
|
def forward(self, x):
|
|
self.backbone_forward = self.backbone_wrapper(F.interpolate(x, scale_factor=2, mode="nearest"))
|
|
|
|
x = self.initial_conv(x)
|
|
|
|
self.attentions = []
|
|
x, att = self.switch(x, output_attention_weights=True)
|
|
self.attentions.append(att)
|
|
|
|
x = self.upconv1(F.interpolate(x, scale_factor=2, mode="nearest"))
|
|
if self.upsample_factor > 2:
|
|
x = F.interpolate(x, scale_factor=2, mode="nearest")
|
|
x = self.upconv2(x)
|
|
return self.final_conv(self.hr_conv(x)),
|
|
|
|
def set_temperature(self, temp):
|
|
self.switch.set_temperature(temp)
|
|
|
|
def update_for_step(self, step, experiments_path='.'):
|
|
if self.attentions:
|
|
temp = max(1, int(
|
|
self.init_temperature * (self.final_temperature_step - step) / self.final_temperature_step))
|
|
if temp == 1 and self.heightened_final_step and self.heightened_final_step != 1:
|
|
# Once the temperature passes (1) it enters an inverted curve to match the linear curve from above.
|
|
# without this, the attention specificity "spikes" incredibly fast in the last few iterations.
|
|
h_steps_total = self.heightened_final_step - self.final_temperature_step
|
|
h_steps_current = min(step - self.final_temperature_step, h_steps_total)
|
|
# The "gap" will represent the steps that need to be traveled as a linear function.
|
|
h_gap = 1 / self.heightened_temp_min
|
|
temp = h_gap * h_steps_current / h_steps_total
|
|
# Invert temperature to represent reality on this side of the curve
|
|
temp = 1 / temp
|
|
self.set_temperature(temp)
|
|
if step % 50 == 0:
|
|
save_attention_to_image(experiments_path, self.attentions[0], self.transformation_counts, step, "a%i" % (1,), l_mult=10)
|
|
|
|
def get_debug_values(self, step):
|
|
temp = self.switch.switch.temperature
|
|
mean_hists = [compute_attention_specificity(att, 2) for att in self.attentions]
|
|
means = [i[0] for i in mean_hists]
|
|
hists = [i[1].clone().detach().cpu().flatten() for i in mean_hists]
|
|
val = {"switch_temperature": temp}
|
|
for i in range(len(means)):
|
|
val["switch_%i_specificity" % (i,)] = means[i]
|
|
val["switch_%i_histogram" % (i,)] = hists[i]
|
|
return val |