DL-Art-School/codes/data/image_folder_dataset.py

209 lines
9.5 KiB
Python

import glob
import itertools
import random
import cv2
import numpy as np
import torch
import os
from data import util
# Builds a dataset created from a simple folder containing a list of training/test/validation images.
from data.image_corruptor import ImageCorruptor
from data.image_label_parser import VsNetImageLabeler
class ImageFolderDataset:
def __init__(self, opt):
self.opt = opt
self.corruptor = ImageCorruptor(opt)
self.target_hq_size = opt['target_size'] if 'target_size' in opt.keys() else None
self.multiple = opt['force_multiple'] if 'force_multiple' in opt.keys() else 1
self.scale = opt['scale']
self.paths = opt['paths']
self.corrupt_before_downsize = opt['corrupt_before_downsize'] if 'corrupt_before_downsize' in opt.keys() else False
self.fetch_alt_image = opt['fetch_alt_image'] # If specified, this dataset will attempt to find a second image
# from the same video source. Search for 'fetch_alt_image' for more info.
self.skip_lq = opt['skip_lq']
assert (self.target_hq_size // self.scale) % self.multiple == 0 # If we dont throw here, we get some really obscure errors.
if not isinstance(self.paths, list):
self.paths = [self.paths]
self.weights = [1]
else:
self.weights = opt['weights']
if 'labeler' in opt.keys():
if opt['labeler']['type'] == 'patch_labels':
self.labeler = VsNetImageLabeler(opt['labeler']['label_file'])
assert len(self.paths) == 1 # Only a single base-path is supported for labeled images.
self.image_paths = self.labeler.get_labeled_paths(self.paths[0])
else:
self.labeler = None
# Just scan the given directory for images of standard types.
supported_types = ['jpg', 'jpeg', 'png', 'gif']
self.image_paths = []
for path, weight in zip(self.paths, self.weights):
cache_path = os.path.join(path, 'cache.pth')
if os.path.exists(cache_path):
imgs = torch.load(cache_path)
else:
print("Building image folder cache, this can take some time for large datasets..")
imgs = []
for ext in supported_types:
imgs.extend(glob.glob(os.path.join(path, "*." + ext)))
torch.save(imgs, cache_path)
for w in range(weight):
self.image_paths.extend(imgs)
self.len = len(self.image_paths)
def get_paths(self):
return self.image_paths
# Given an HQ square of arbitrary size, resizes it to specifications from opt.
def resize_hq(self, imgs_hq):
# Enforce size constraints
h, w, _ = imgs_hq[0].shape
if self.target_hq_size is not None and self.target_hq_size != h:
hqs_adjusted = []
for hq in imgs_hq:
# It is assumed that the target size is a square.
target_size = (self.target_hq_size, self.target_hq_size)
hqs_adjusted.append(cv2.resize(hq, target_size, interpolation=cv2.INTER_AREA))
h, w = self.target_hq_size, self.target_hq_size
else:
hqs_adjusted = imgs_hq
hq_multiple = self.multiple * self.scale # Multiple must apply to LQ image.
if h % hq_multiple != 0 or w % hq_multiple != 0:
hqs_conformed = []
for hq in hqs_adjusted:
h, w = (h - h % hq_multiple), (w - w % hq_multiple)
hqs_conformed.append(hq[:h, :w, :])
return hqs_conformed
return hqs_adjusted
def synthesize_lq(self, hs):
h, w, _ = hs[0].shape
ls = []
local_scale = self.scale
if self.corrupt_before_downsize:
# You can downsize to a specified scale, then corrupt, then continue the downsize further using this option.
if 'corrupt_before_downsize_factor' in self.opt.keys():
special_factor = self.opt['corrupt_before_downsize_factor']
hs = [cv2.resize(h_, (h // special_factor, w // special_factor), interpolation=cv2.INTER_AREA) for h_ in hs]
local_scale = local_scale // special_factor
else:
hs = [h.copy() for h in hs]
hs = self.corruptor.corrupt_images(hs)
for hq in hs:
h, w, _ = hq.shape
ls.append(cv2.resize(hq, (h // local_scale, w // local_scale), interpolation=cv2.INTER_AREA))
# Corrupt the LQ image (only in eval mode)
if not self.corrupt_before_downsize:
ls = self.corruptor.corrupt_images(ls)
return ls
def __len__(self):
return self.len
def __getitem__(self, item):
hq = util.read_img(None, self.image_paths[item], rgb=True)
if self.labeler:
assert hq.shape[0] == hq.shape[1] # This just has not been accomodated yet.
dim = hq.shape[0]
hs = self.resize_hq([hq])
if not self.skip_lq:
ls = self.synthesize_lq(hs)
# Convert to torch tensor
hq = torch.from_numpy(np.ascontiguousarray(np.transpose(hs[0], (2, 0, 1)))).float()
if not self.skip_lq:
lq = torch.from_numpy(np.ascontiguousarray(np.transpose(ls[0], (2, 0, 1)))).float()
out_dict = {'hq': hq, 'LQ_path': self.image_paths[item], 'HQ_path': self.image_paths[item]}
if not self.skip_lq:
out_dict['lq'] = lq
if self.fetch_alt_image:
# This works by assuming a specific filename structure as would produced by ffmpeg. ex:
# 'Candied Walnutsxjktqhr_SYc.webm_00000478.jpg` and
# 'Candied Walnutsxjktqhr_SYc.webm_00000479.jpg` and
# 'Candied Walnutsxjktqhr_SYc.webm_00000480.jpg`
# The basic format is `<anything>%08d.<extension>`. This logic parses off that 8 digit number. If it is
# not found, the 'alt_image' returned is just the current image. If it is found, the algorithm searches for
# an image one number higher. If it is found - it is returned in the 'alt_hq' and 'alt_lq' keys, else the
# current image is put in those keys.
imname_parts = self.image_paths[item]
while '.jpg.jpg' in imname_parts:
imname_parts = imname_parts.replace(".jpg.jpg", ".jpg") # Hack workaround to my own bug.
imname_parts = imname_parts.split('.')
if len(imname_parts) >= 2 and len(imname_parts[-2]) > 8:
try:
imnumber = int(imname_parts[-2][-8:])
# When we're dealing with images in the 1M range, it's straight up faster to attempt to just open
# the file rather than searching the path list. Let the exception handler below do its work.
next_img = self.image_paths[item].replace(str(imnumber), str(imnumber+1))
alt_hq = util.read_img(None, next_img, rgb=True)
alt_hq = self.resize_hq([alt_hq])
alt_hq = torch.from_numpy(np.ascontiguousarray(np.transpose(alt_hq[0], (2, 0, 1)))).float()
if not self.skip_lq:
alt_lq = self.synthesize_lq(alt_hq)
alt_lq = torch.from_numpy(np.ascontiguousarray(np.transpose(alt_lq[0], (2, 0, 1)))).float()
except:
alt_hq = hq
if not self.skip_lq:
alt_lq = lq
else:
alt_hq = hq
if not self.skip_lq:
alt_lq = lq
out_dict['alt_hq'] = alt_hq
if not self.skip_lq:
out_dict['alt_lq'] = alt_lq
if self.labeler:
base_file = self.image_paths[item].replace(self.paths[0], "")
while base_file.startswith("\\"):
base_file = base_file[1:]
assert dim % hq.shape[1] == 0
lbls, lbl_masks, lblstrings = self.labeler.get_labels_as_tensor(hq, base_file, dim // hq.shape[1])
out_dict['labels'] = lbls
out_dict['labels_mask'] = lbl_masks
out_dict['label_strings'] = lblstrings
return out_dict
if __name__ == '__main__':
opt = {
'name': 'amalgam',
'paths': ['F:\\4k6k\\datasets\\images\\youtube\\4k_quote_unquote\\images'],
'weights': [1],
'target_size': 256,
'force_multiple': 32,
'scale': 2,
'fixed_corruptions': ['jpeg-broad', 'gaussian_blur'],
'random_corruptions': ['noise-5', 'none'],
'num_corrupts_per_image': 1,
'corrupt_before_downsize': True,
'fetch_alt_image': True,
#'labeler': {
# 'type': 'patch_labels',
# 'label_file': 'F:\\4k6k\\datasets\\ns_images\\512_unsupervised\\categories_new.json'
#}
}
ds = ImageFolderDataset(opt)
import os
os.makedirs("debug", exist_ok=True)
for i in range(0, len(ds)):
o = ds[random.randint(0, len(ds)-1)]
hq = o['hq']
#masked = (o['labels_mask'] * .5 + .5) * hq
import torchvision
torchvision.utils.save_image(hq.unsqueeze(0), "debug/%i_hq.png" % (i,))
torchvision.utils.save_image(o['alt_hq'].unsqueeze(0), "debug/%i_hq_alt.png" % (i,))
#if len(o['labels'].unique()) > 1:
# randlbl = np.random.choice(o['labels'].unique()[1:])
# moremask = hq * ((1*(o['labels'] == randlbl))*.5+.5)
# torchvision.utils.save_image(moremask.unsqueeze(0), "debug/%i_%s.png" % (i, o['label_strings'][randlbl]))