DL-Art-School/codes/data/LQGT_dataset.py
James Betker eb11a08d1c Enable disjoint feature networks
This is done by pre-training a feature net that predicts the features
of HR images from LR images. Then use the original feature network
and this new one in tandem to work only on LR/Gen images.
2020-07-31 16:29:47 -06:00

233 lines
11 KiB
Python

import random
import numpy as np
import cv2
import lmdb
import torch
import torch.utils.data as data
import data.util as util
from PIL import Image, ImageOps
from io import BytesIO
import torchvision.transforms.functional as F
class LQGTDataset(data.Dataset):
"""
Read LQ (Low Quality, e.g. LR (Low Resolution), blurry, etc) and GT image pairs.
If only GT images are provided, generate LQ images on-the-fly.
"""
def get_lq_path(self, i):
which_lq = random.randint(0, len(self.paths_LQ)-1)
return self.paths_LQ[which_lq][i % len(self.paths_LQ[which_lq])]
def __init__(self, opt):
super(LQGTDataset, self).__init__()
self.opt = opt
self.data_type = self.opt['data_type']
self.paths_LQ, self.paths_GT = None, None
self.sizes_LQ, self.sizes_GT = None, None
self.paths_PIX, self.sizes_PIX = None, None
self.paths_GAN, self.sizes_GAN = None, None
self.LQ_env, self.GT_env, self.PIX_env = None, None, None # environments for lmdbs
self.force_multiple = self.opt['force_multiple'] if 'force_multiple' in self.opt.keys() else 1
self.paths_GT, self.sizes_GT = util.get_image_paths(self.data_type, opt['dataroot_GT'], opt['dataroot_GT_weights'])
if 'dataroot_LQ' in opt.keys():
self.paths_LQ = []
if isinstance(opt['dataroot_LQ'], list):
# Multiple LQ data sources can be given, in case there are multiple ways of corrupting a source image and
# we want the model to learn them all.
for dr_lq in opt['dataroot_LQ']:
lq_path, self.sizes_LQ = util.get_image_paths(self.data_type, dr_lq)
self.paths_LQ.append(lq_path)
else:
lq_path, self.sizes_LQ = util.get_image_paths(self.data_type, opt['dataroot_LQ'])
self.paths_LQ.append(lq_path)
self.doCrop = opt['doCrop']
if 'dataroot_PIX' in opt.keys():
self.paths_PIX, self.sizes_PIX = util.get_image_paths(self.data_type, opt['dataroot_PIX'])
# dataroot_GAN is an alternative source of LR images specifically for use in computing the GAN loss, where
# LR and HR do not need to be paired.
if 'dataroot_GAN' in opt.keys():
self.paths_GAN, self.sizes_GAN = util.get_image_paths(self.data_type, opt['dataroot_GAN'])
print('loaded %i images for use in training GAN only.' % (self.sizes_GAN,))
assert self.paths_GT, 'Error: GT path is empty.'
self.random_scale_list = [1]
def _init_lmdb(self):
# https://github.com/chainer/chainermn/issues/129
self.GT_env = lmdb.open(self.opt['dataroot_GT'], readonly=True, lock=False, readahead=False,
meminit=False)
self.LQ_env = lmdb.open(self.opt['dataroot_LQ'], readonly=True, lock=False, readahead=False,
meminit=False)
if 'dataroot_PIX' in self.opt.keys():
self.PIX_env = lmdb.open(self.opt['dataroot_PIX'], readonly=True, lock=False, readahead=False,
meminit=False)
def motion_blur(self, image, size, angle):
k = np.zeros((size, size), dtype=np.float32)
k[(size - 1) // 2, :] = np.ones(size, dtype=np.float32)
k = cv2.warpAffine(k, cv2.getRotationMatrix2D((size / 2 - 0.5, size / 2 - 0.5), angle, 1.0), (size, size))
k = k * (1.0 / np.sum(k))
return cv2.filter2D(image, -1, k)
def __getitem__(self, index):
if self.data_type == 'lmdb' and (self.GT_env is None or self.LQ_env is None):
self._init_lmdb()
GT_path, LQ_path = None, None
scale = self.opt['scale']
GT_size = self.opt['target_size']
# get GT image
GT_path = self.paths_GT[index % len(self.paths_GT)]
resolution = [int(s) for s in self.sizes_GT[index].split('_')
] if self.data_type == 'lmdb' else None
img_GT = util.read_img(self.GT_env, GT_path, resolution)
if self.opt['phase'] != 'train': # modcrop in the validation / test phase
img_GT = util.modcrop(img_GT, scale)
if self.opt['color']: # change color space if necessary
img_GT = util.channel_convert(img_GT.shape[2], self.opt['color'], [img_GT])[0]
# get the pix image
if self.paths_PIX is not None:
PIX_path = self.paths_PIX[index]
img_PIX = util.read_img(self.PIX_env, PIX_path, resolution)
if self.opt['color']: # change color space if necessary
img_PIX = util.channel_convert(img_PIX.shape[2], self.opt['color'], [img_PIX])[0]
else:
img_PIX = img_GT
# get LQ image
if self.paths_LQ:
LQ_path = self.get_lq_path(index)
resolution = [int(s) for s in self.sizes_LQ[index].split('_')
] if self.data_type == 'lmdb' else None
img_LQ = util.read_img(self.LQ_env, LQ_path, resolution)
else: # down-sampling on-the-fly
# randomly scale during training
if self.opt['phase'] == 'train':
random_scale = random.choice(self.random_scale_list)
H_s, W_s, _ = img_GT.shape
def _mod(n, random_scale, scale, thres):
rlt = int(n * random_scale)
rlt = (rlt // scale) * scale
return thres if rlt < thres else rlt
H_s = _mod(H_s, random_scale, scale, GT_size)
W_s = _mod(W_s, random_scale, scale, GT_size)
img_GT = cv2.resize(img_GT, (W_s, H_s), interpolation=cv2.INTER_LINEAR)
if img_GT.ndim == 2:
img_GT = cv2.cvtColor(img_GT, cv2.COLOR_GRAY2BGR)
H, W, _ = img_GT.shape
# using matlab imresize
img_LQ = util.imresize_np(img_GT, 1 / scale, True)
if img_LQ.ndim == 2:
img_LQ = np.expand_dims(img_LQ, axis=2)
img_GAN = None
if self.paths_GAN:
GAN_path = self.paths_GAN[index % self.sizes_GAN]
img_GAN = util.read_img(self.LQ_env, GAN_path)
# Enforce force_resize constraints.
h, w, _ = img_LQ.shape
if h % self.force_multiple != 0 or w % self.force_multiple != 0:
h, w = (w - w % self.force_multiple), (h - h % self.force_multiple)
img_LQ = cv2.resize(img_LQ, (h, w))
h *= scale
w *= scale
img_GT = cv2.resize(img_GT, (h, w))
img_PIX = cv2.resize(img_LQ, (h, w))
if self.opt['phase'] == 'train':
H, W, _ = img_GT.shape
assert H >= GT_size and W >= GT_size
H, W, C = img_LQ.shape
LQ_size = GT_size // scale
if self.doCrop:
# randomly crop
rnd_h = random.randint(0, max(0, H - LQ_size))
rnd_w = random.randint(0, max(0, W - LQ_size))
img_LQ = img_LQ[rnd_h:rnd_h + LQ_size, rnd_w:rnd_w + LQ_size, :]
if img_GAN is not None:
img_GAN = img_GAN[rnd_h:rnd_h + LQ_size, rnd_w:rnd_w + LQ_size, :]
rnd_h_GT, rnd_w_GT = int(rnd_h * scale), int(rnd_w * scale)
img_GT = img_GT[rnd_h_GT:rnd_h_GT + GT_size, rnd_w_GT:rnd_w_GT + GT_size, :]
img_PIX = img_PIX[rnd_h_GT:rnd_h_GT + GT_size, rnd_w_GT:rnd_w_GT + GT_size, :]
else:
img_LQ = cv2.resize(img_LQ, (LQ_size, LQ_size), interpolation=cv2.INTER_LINEAR)
if img_GAN is not None:
img_GAN = cv2.resize(img_GAN, (LQ_size, LQ_size), interpolation=cv2.INTER_LINEAR)
img_GT = cv2.resize(img_GT, (GT_size, GT_size), interpolation=cv2.INTER_LINEAR)
img_PIX = cv2.resize(img_PIX, (GT_size, GT_size), interpolation=cv2.INTER_LINEAR)
if 'doResizeLoss' in self.opt.keys() and self.opt['doResizeLoss']:
r = random.randrange(0, 10)
if r > 5:
img_LQ = cv2.resize(img_LQ, (int(LQ_size/2), int(LQ_size/2)), interpolation=cv2.INTER_LINEAR)
img_LQ = cv2.resize(img_LQ, (LQ_size, LQ_size), interpolation=cv2.INTER_LINEAR)
# augmentation - flip, rotate
img_LQ, img_GT, img_PIX = util.augment([img_LQ, img_GT, img_PIX], self.opt['use_flip'],
self.opt['use_rot'])
if self.opt['use_blurring']:
# Pick randomly between gaussian, motion, or no blur.
blur_det = random.randint(0, 100)
blur_magnitude = 3 if 'blur_magnitude' not in self.opt.keys() else self.opt['blur_magnitude']
if blur_det < 40:
blur_sig = int(random.randrange(0, blur_magnitude))
img_LQ = cv2.GaussianBlur(img_LQ, (blur_magnitude, blur_magnitude), blur_sig)
elif blur_det < 70:
img_LQ = self.motion_blur(img_LQ, random.randrange(1, blur_magnitude * 3), random.randint(0, 360))
if self.opt['color']: # change color space if necessary
img_LQ = util.channel_convert(C, self.opt['color'],
[img_LQ])[0] # TODO during val no definition
# BGR to RGB, HWC to CHW, numpy to tensor
if img_GT.shape[2] == 3:
img_GT = cv2.cvtColor(img_GT, cv2.COLOR_BGR2RGB)
img_LQ = cv2.cvtColor(img_LQ, cv2.COLOR_BGR2RGB)
if img_GAN is not None:
img_GAN = cv2.cvtColor(img_GAN, cv2.COLOR_BGR2RGB)
img_PIX = cv2.cvtColor(img_PIX, cv2.COLOR_BGR2RGB)
# LQ needs to go to a PIL image to perform the compression-artifact transformation.
img_LQ = (img_LQ * 255).astype(np.uint8)
img_LQ = Image.fromarray(img_LQ)
if self.opt['use_compression_artifacts'] and random.random() > .25:
qf = random.randrange(10, 70)
corruption_buffer = BytesIO()
img_LQ.save(corruption_buffer, "JPEG", quality=qf, optimice=True)
corruption_buffer.seek(0)
img_LQ = Image.open(corruption_buffer)
if 'grayscale' in self.opt.keys() and self.opt['grayscale']:
img_LQ = ImageOps.grayscale(img_LQ).convert('RGB')
img_GT = torch.from_numpy(np.ascontiguousarray(np.transpose(img_GT, (2, 0, 1)))).float()
img_PIX = torch.from_numpy(np.ascontiguousarray(np.transpose(img_PIX, (2, 0, 1)))).float()
img_LQ = F.to_tensor(img_LQ)
if img_GAN is not None:
img_GAN = torch.from_numpy(np.ascontiguousarray(np.transpose(img_GAN, (2, 0, 1)))).float()
lq_noise = torch.randn_like(img_LQ) * 5 / 255
img_LQ += lq_noise
if LQ_path is None:
LQ_path = GT_path
d = {'LQ': img_LQ, 'GT': img_GT, 'PIX': img_PIX, 'LQ_path': LQ_path, 'GT_path': GT_path}
if img_GAN is not None:
d['GAN'] = img_GAN
return d
def __len__(self):
return len(self.paths_GT)