DL-Art-School/codes/options/train/finetune_ESRGAN_vrp.yml
2020-04-22 00:37:54 -06:00

83 lines
1.5 KiB
YAML

#### general settings
name: ESRGANx4_VRP
use_tb_logger: true
model: srgan
distortion: sr
scale: 4
gpu_ids: [0]
#### datasets
datasets:
train:
name: VRP
mode: LQGT
dataroot_GT: ../datasets/vrp/train/hr
dataroot_LQ: ../datasets/vrp/train/lr
use_shuffle: true
n_workers: 0 # per GPU
batch_size: 16
target_size: 128
use_flip: true
use_rot: true
color: RGB
val:
name: VRP_val
mode: LQGT
dataroot_GT: ../datasets/vrp/validation/hr
dataroot_LQ: ../datasets/vrp/validation/lr
#### network structures
network_G:
which_model_G: RRDBNet
in_nc: 3
out_nc: 3
nf: 64
nb: 23
network_D:
which_model_D: discriminator_vgg_128
in_nc: 3
nf: 64
#### path
path:
pretrain_model_G: ../experiments/div2k_gen_pretrain.pth
pretrain_model_D: ../experiments/div2k_disc_pretrain.pth
strict_load: true
resume_state: ~
#### training settings: learning rate scheme, loss
train:
lr_G: !!float 1e-5
weight_decay_G: 0
beta1_G: 0.9
beta2_G: 0.99
lr_D: !!float 1e-5
weight_decay_D: 0
beta1_D: 0.9
beta2_D: 0.99
lr_scheme: MultiStepLR
niter: 400000
warmup_iter: -1 # no warm up
lr_steps: [50000, 100000, 200000, 300000]
lr_gamma: 0.5
pixel_criterion: l1
pixel_weight: !!float 1e-2
feature_criterion: l1
feature_weight: 1
gan_type: ragan # gan | ragan
gan_weight: !!float 5e-3
D_update_ratio: 1
D_init_iters: 0
manual_seed: 10
val_freq: !!float 5e2
#### logger
logger:
print_freq: 50
save_checkpoint_freq: !!float 5e2