DL-Art-School/codes/trainer/eval/music_diffusion_fid.py
2022-05-27 09:25:53 -06:00

259 lines
13 KiB
Python

import os
import os.path as osp
from glob import glob
from random import shuffle
from time import time
import numpy as np
import torch
import torchaudio
import torchvision
from pytorch_fid.fid_score import calculate_frechet_distance
from torch import distributed
from tqdm import tqdm
import trainer.eval.evaluator as evaluator
from data.audio.unsupervised_audio_dataset import load_audio
from models.audio.mel2vec import ContrastiveTrainingWrapper
from models.audio.music.unet_diffusion_waveform_gen import DiffusionWaveformGen
from models.clip.contrastive_audio import ContrastiveAudio
from models.diffusion.gaussian_diffusion import get_named_beta_schedule
from models.diffusion.respace import space_timesteps, SpacedDiffusion
from trainer.injectors.audio_injectors import denormalize_mel, TorchMelSpectrogramInjector, pixel_shuffle_1d, \
normalize_mel
from utils.music_utils import get_music_codegen, get_mel2wav_model
from utils.util import opt_get, load_model_from_config
class MusicDiffusionFid(evaluator.Evaluator):
"""
Evaluator produces generate from a music diffusion model.
"""
def __init__(self, model, opt_eval, env):
super().__init__(model, opt_eval, env, uses_all_ddp=True)
self.real_path = opt_eval['path']
self.data = self.load_data(self.real_path)
if distributed.is_initialized() and distributed.get_world_size() > 1:
self.skip = distributed.get_world_size() # One batch element per GPU.
else:
self.skip = 1
diffusion_steps = opt_get(opt_eval, ['diffusion_steps'], 50)
diffusion_schedule = opt_get(env['opt'], ['steps', 'generator', 'injectors', 'diffusion', 'beta_schedule', 'schedule_name'], None)
if diffusion_schedule is None:
print("Unable to infer diffusion schedule from master options. Getting it from eval (or guessing).")
diffusion_schedule = opt_get(opt_eval, ['diffusion_schedule'], 'linear')
conditioning_free_diffusion_enabled = opt_get(opt_eval, ['conditioning_free'], False)
conditioning_free_k = opt_get(opt_eval, ['conditioning_free_k'], 1)
self.diffuser = SpacedDiffusion(use_timesteps=space_timesteps(4000, [diffusion_steps]), model_mean_type='epsilon',
model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule(diffusion_schedule, 4000),
conditioning_free=conditioning_free_diffusion_enabled, conditioning_free_k=conditioning_free_k)
self.dev = self.env['device']
mode = opt_get(opt_eval, ['diffusion_type'], 'tts')
self.spec_decoder = get_mel2wav_model()
self.projector = ContrastiveAudio(model_dim=512, transformer_heads=8, dropout=0, encoder_depth=8, mel_channels=256)
self.projector.load_state_dict(torch.load('../experiments/music_eval_projector.pth', map_location=torch.device('cpu')))
self.local_modules = {'spec_decoder': self.spec_decoder, 'projector': self.projector}
if mode == 'spec_decode':
self.diffusion_fn = self.perform_diffusion_spec_decode
elif 'gap_fill_' in mode:
self.diffusion_fn = self.perform_diffusion_gap_fill
if '_freq' in mode:
self.gap_gen_fn = self.gen_freq_gap
else:
self.gap_gen_fn = self.gen_time_gap
elif 'rerender' in mode:
self.diffusion_fn = self.perform_rerender
elif 'from_codes' == mode:
self.diffusion_fn = self.perform_diffusion_from_codes
self.local_modules['codegen'] = get_music_codegen()
self.spec_fn = TorchMelSpectrogramInjector({'n_mel_channels': 256, 'mel_fmax': 11000, 'filter_length': 16000,
'normalize': True, 'in': 'in', 'out': 'out'}, {})
def load_data(self, path):
return list(glob(f'{path}/*.wav'))
def perform_diffusion_spec_decode(self, audio, sample_rate=22050):
if sample_rate != sample_rate:
real_resampled = torchaudio.functional.resample(audio, 22050, sample_rate).unsqueeze(0)
else:
real_resampled = audio
audio = audio.unsqueeze(0)
output_shape = (1, 16, audio.shape[-1] // 16)
mel = self.spec_fn({'in': audio})['out']
gen = self.diffuser.p_sample_loop(self.model, output_shape,
model_kwargs={'aligned_conditioning': mel})
gen = pixel_shuffle_1d(gen, 16)
return gen, real_resampled, normalize_mel(self.spec_fn({'in': gen})['out']), normalize_mel(mel), sample_rate
def gen_freq_gap(self, mel, band_range=(60,100)):
gap_start, gap_end = band_range
mask = torch.ones_like(mel)
mask[:, gap_start:gap_end] = 0
return mel * mask, mask
def gen_time_gap(self, mel):
mask = torch.ones_like(mel)
mask[:, :, 86*4:86*6] = 0
return mel * mask, mask
def perform_diffusion_gap_fill(self, audio, sample_rate=22050):
if sample_rate != sample_rate:
real_resampled = torchaudio.functional.resample(audio, 22050, sample_rate).unsqueeze(0)
else:
real_resampled = audio
audio = audio.unsqueeze(0)
# Fetch the MEL and mask out the requested bands.
mel = self.spec_fn({'in': audio})['out']
mel = normalize_mel(mel)
mel, mask = self.gap_gen_fn(mel)
# Repair the MEL with the given model.
spec = self.diffuser.p_sample_loop_with_guidance(self.model, mel, mask, model_kwargs={'truth': mel})
spec = denormalize_mel(spec)
# Re-convert the resulting MEL back into audio using the spectrogram decoder.
output_shape = (1, 16, audio.shape[-1] // 16)
self.spec_decoder = self.spec_decoder.to(audio.device)
# Cool fact: we can re-use the diffuser for the spectrogram diffuser since it has the same parametrization.
gen = self.diffuser.p_sample_loop(self.spec_decoder, output_shape,
model_kwargs={'aligned_conditioning': spec})
gen = pixel_shuffle_1d(gen, 16)
return gen, real_resampled, normalize_mel(spec), mel, sample_rate
def perform_rerender(self, audio, sample_rate=22050):
if sample_rate != sample_rate:
real_resampled = torchaudio.functional.resample(audio, 22050, sample_rate).unsqueeze(0)
else:
real_resampled = audio
audio = audio.unsqueeze(0)
# Fetch the MEL and mask out the requested bands.
mel = self.spec_fn({'in': audio})['out']
mel = normalize_mel(mel)
segments = [(0,10),(10,25),(25,45),(45,60),(60,80),(80,100),(100,130),(130,170),(170,210),(210,256)]
shuffle(segments)
spec = mel
for i, segment in enumerate(segments):
mel, mask = self.gen_freq_gap(mel, band_range=segment)
# Repair the MEL with the given model.
spec = self.diffuser.p_sample_loop_with_guidance(self.model, spec, mask, model_kwargs={'truth': spec})
torchvision.utils.save_image((spec.unsqueeze(1) + 1) / 2, f"{i}_rerender.png")
spec = denormalize_mel(spec)
# Re-convert the resulting MEL back into audio using the spectrogram decoder.
output_shape = (1, 16, audio.shape[-1] // 16)
self.spec_decoder = self.spec_decoder.to(audio.device)
# Cool fact: we can re-use the diffuser for the spectrogram diffuser since it has the same parametrization.
gen = self.diffuser.p_sample_loop(self.spec_decoder, output_shape, noise=torch.zeros(*output_shape, device=audio.device),
model_kwargs={'aligned_conditioning': spec})
gen = pixel_shuffle_1d(gen, 16)
return gen, real_resampled, normalize_mel(spec), mel, sample_rate
def perform_diffusion_from_codes(self, audio, sample_rate=22050):
if sample_rate != sample_rate:
real_resampled = torchaudio.functional.resample(audio, 22050, sample_rate).unsqueeze(0)
else:
real_resampled = audio
audio = audio.unsqueeze(0)
# Fetch the MEL and mask out the requested bands.
mel = self.spec_fn({'in': audio})['out']
codegen = self.local_modules['codegen'].to(mel.device)
codes = codegen.get_codes(mel)
mel_norm = normalize_mel(mel)
precomputed = self.model.timestep_independent(aligned_conditioning=codes, conditioning_input=mel[:,:,:112],
expected_seq_len=mel_norm.shape[-1], return_code_pred=False)
gen_mel = self.diffuser.p_sample_loop(self.model, mel_norm.shape, noise=torch.zeros_like(mel_norm),
model_kwargs={'precomputed_aligned_embeddings': precomputed})
gen_mel_denorm = denormalize_mel(gen_mel)
output_shape = (1,16,audio.shape[-1]//16)
self.spec_decoder = self.spec_decoder.to(audio.device)
gen_wav = self.diffuser.p_sample_loop(self.spec_decoder, output_shape, model_kwargs={'aligned_conditioning': gen_mel_denorm})
gen_wav = pixel_shuffle_1d(gen_wav, 16)
return gen_wav, real_resampled, gen_mel, mel_norm, sample_rate
def project(self, sample, sample_rate):
sample = torchaudio.functional.resample(sample, sample_rate, 22050)
mel = self.spec_fn({'in': sample})['out']
projection = self.projector.project(mel)
return projection.squeeze(0) # Getting rid of the batch dimension means it's just [hidden_dim]
def compute_frechet_distance(self, proj1, proj2):
# I really REALLY FUCKING HATE that this is going to numpy. Why does "pytorch_fid" operate in numpy land. WHY?
proj1 = proj1.cpu().numpy()
proj2 = proj2.cpu().numpy()
mu1 = np.mean(proj1, axis=0)
mu2 = np.mean(proj2, axis=0)
sigma1 = np.cov(proj1, rowvar=False)
sigma2 = np.cov(proj2, rowvar=False)
return torch.tensor(calculate_frechet_distance(mu1, sigma1, mu2, sigma2))
def perform_eval(self):
save_path = osp.join(self.env['base_path'], "../", "audio_eval", str(self.env["step"]))
os.makedirs(save_path, exist_ok=True)
self.projector = self.projector.to(self.dev)
self.projector.eval()
# Attempt to fix the random state as much as possible. RNG state will be restored before returning.
rng_state = torch.get_rng_state()
torch.manual_seed(5)
self.model.eval()
with torch.no_grad():
gen_projections = []
real_projections = []
for i in tqdm(list(range(0, len(self.data), self.skip))):
path = self.data[i + self.env['rank']]
audio = load_audio(path, 22050).to(self.dev)
audio = audio[:, :22050*10]
sample, ref, sample_mel, ref_mel, sample_rate = self.diffusion_fn(audio)
gen_projections.append(self.project(sample, sample_rate).cpu()) # Store on CPU to avoid wasting GPU memory.
real_projections.append(self.project(ref, sample_rate).cpu())
torchaudio.save(os.path.join(save_path, f"{self.env['rank']}_{i}_gen.wav"), sample.squeeze(0).cpu(), sample_rate)
torchaudio.save(os.path.join(save_path, f"{self.env['rank']}_{i}_real.wav"), ref.cpu(), sample_rate)
torchvision.utils.save_image((sample_mel.unsqueeze(1) + 1) / 2, os.path.join(save_path, f"{self.env['rank']}_{i}_gen_mel.png"))
torchvision.utils.save_image((ref_mel.unsqueeze(1) + 1) / 2, os.path.join(save_path, f"{self.env['rank']}_{i}_real_mel.png"))
gen_projections = torch.stack(gen_projections, dim=0)
real_projections = torch.stack(real_projections, dim=0)
frechet_distance = torch.tensor(self.compute_frechet_distance(gen_projections, real_projections), device=self.env['device'])
if distributed.is_initialized() and distributed.get_world_size() > 1:
distributed.all_reduce(frechet_distance)
frechet_distance = frechet_distance / distributed.get_world_size()
self.model.train()
torch.set_rng_state(rng_state)
# Put modules used for evaluation back into CPU memory.
for k, mod in self.local_modules.items():
self.local_modules[k] = mod.cpu()
return {"frechet_distance": frechet_distance}
if __name__ == '__main__':
diffusion = load_model_from_config('X:\\dlas\\experiments\\train_music_waveform_gen.yml', 'generator',
also_load_savepoint=False,
load_path='X:\\dlas\\experiments\\train_music_waveform_gen_reformed_mel\\models\\57500_generator_ema.pth'
).cuda()
opt_eval = {'path': 'Y:\\split\\yt-music-eval', 'diffusion_steps': 500,
'conditioning_free': True, 'conditioning_free_k': 1,
'diffusion_schedule': 'linear', 'diffusion_type': 'spec_decode'}
env = {'rank': 0, 'base_path': 'D:\\tmp\\test_eval_music', 'step': 26, 'device': 'cuda', 'opt': {}}
eval = MusicDiffusionFid(diffusion, opt_eval, env)
print(eval.perform_eval())