136 lines
5.5 KiB
Python
136 lines
5.5 KiB
Python
import os
|
|
import random
|
|
|
|
import torch
|
|
import torch.utils.data
|
|
import torchaudio
|
|
from tqdm import tqdm
|
|
|
|
from data.audio.wav_aug import WavAugmentor
|
|
from data.util import find_files_of_type, is_wav_file
|
|
from models.tacotron2.taco_utils import load_wav_to_torch
|
|
from utils.util import opt_get
|
|
|
|
|
|
def load_audio_from_wav(audiopath, sampling_rate):
|
|
audio, lsr = load_wav_to_torch(audiopath)
|
|
if lsr != sampling_rate:
|
|
if lsr < sampling_rate:
|
|
print(f'{audiopath} has a sample rate of {sampling_rate} which is lower than the requested sample rate of {sampling_rate}. This is not a good idea.')
|
|
audio = torch.nn.functional.interpolate(audio.unsqueeze(0).unsqueeze(1), scale_factor=sampling_rate/lsr, mode='nearest', recompute_scale_factor=False).squeeze()
|
|
|
|
# Check some assumptions about audio range. This should be automatically fixed in load_wav_to_torch, but might not be in some edge cases, where we should squawk.
|
|
# '2' is arbitrarily chosen since it seems like audio will often "overdrive" the [-1,1] bounds.
|
|
if torch.any(audio > 2) or not torch.any(audio < 0):
|
|
print(f"Error with {audiopath}. Max={audio.max()} min={audio.min()}")
|
|
audio.clip_(-1, 1)
|
|
return audio.unsqueeze(0)
|
|
|
|
|
|
class WavfileDataset(torch.utils.data.Dataset):
|
|
|
|
def __init__(self, opt):
|
|
path = opt['path']
|
|
cache_path = opt['cache_path'] # Will fail when multiple paths specified, must be specified in this case.
|
|
if not isinstance(path, list):
|
|
path = [path]
|
|
if os.path.exists(cache_path):
|
|
self.audiopaths = torch.load(cache_path)
|
|
else:
|
|
print("Building cache..")
|
|
self.audiopaths = []
|
|
for p in path:
|
|
self.audiopaths.extend(find_files_of_type('img', p, qualifier=is_wav_file)[0])
|
|
torch.save(self.audiopaths, cache_path)
|
|
|
|
# Parse options
|
|
self.sampling_rate = opt_get(opt, ['sampling_rate'], 24000)
|
|
self.pad_to = opt_get(opt, ['pad_to_seconds'], None)
|
|
if self.pad_to is not None:
|
|
self.pad_to *= self.sampling_rate
|
|
self.pad_to = opt_get(opt, ['pad_to_samples'], self.pad_to)
|
|
|
|
self.augment = opt_get(opt, ['do_augmentation'], False)
|
|
if self.augment:
|
|
# The "window size" for the clips produced in seconds.
|
|
self.window = 2 * self.sampling_rate
|
|
self.augmentor = WavAugmentor()
|
|
|
|
def get_audio_for_index(self, index):
|
|
audiopath = self.audiopaths[index]
|
|
audio = load_audio_from_wav(audiopath, self.sampling_rate)
|
|
return audio, audiopath
|
|
|
|
def __getitem__(self, index):
|
|
success = False
|
|
# This "success" thing is a hack: This dataset is randomly failing for no apparent good reason and I don't know why.
|
|
# Symptoms are it complaining about being unable to read a nonsensical filename that is clearly corrupted. Memory corruption? I don't know..
|
|
while not success:
|
|
try:
|
|
# Split audio_norm into two tensors of equal size.
|
|
audio_norm, filename = self.get_audio_for_index(index)
|
|
success = True
|
|
except:
|
|
print(f"Failed to load {index} {self.audiopaths[index]}")
|
|
|
|
if self.augment:
|
|
if audio_norm.shape[1] < self.window * 2:
|
|
# Try next index. This adds a bit of bias and ideally we'd filter the dataset rather than do this.
|
|
return self[(index + 1) % len(self)]
|
|
j = random.randint(0, audio_norm.shape[1] - self.window)
|
|
clip1 = audio_norm[:, j:j+self.window]
|
|
if self.augment:
|
|
clip1 = self.augmentor.augment(clip1, self.sampling_rate)
|
|
j = random.randint(0, audio_norm.shape[1]-self.window)
|
|
clip2 = audio_norm[:, j:j+self.window]
|
|
if self.augment:
|
|
clip2 = self.augmentor.augment(clip2, self.sampling_rate)
|
|
|
|
# This is required when training to make sure all clips align.
|
|
if self.pad_to is not None:
|
|
if audio_norm.shape[-1] <= self.pad_to:
|
|
audio_norm = torch.nn.functional.pad(audio_norm, (0, self.pad_to - audio_norm.shape[-1]))
|
|
else:
|
|
gap = audio_norm.shape[-1] - self.pad_to
|
|
start = random.randint(0, gap-1)
|
|
audio_norm = audio_norm[:, start:start+self.pad_to]
|
|
|
|
output = {
|
|
'clip': audio_norm,
|
|
'path': filename,
|
|
}
|
|
if self.augment:
|
|
output.update({
|
|
'clip1': clip1[0, :].unsqueeze(0),
|
|
'clip2': clip2[0, :].unsqueeze(0),
|
|
})
|
|
return output
|
|
|
|
def __len__(self):
|
|
return len(self.audiopaths)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
params = {
|
|
'mode': 'wavfile_clips',
|
|
'path': ['E:\\audio\\books-split', 'E:\\audio\\LibriTTS\\train-clean-360', 'D:\\data\\audio\\podcasts-split'],
|
|
'cache_path': 'E:\\audio\\clips-cache.pth',
|
|
'sampling_rate': 22050,
|
|
'pad_to_seconds': 5,
|
|
'phase': 'train',
|
|
'n_workers': 0,
|
|
'batch_size': 16,
|
|
'do_augmentation': False
|
|
}
|
|
from data import create_dataset, create_dataloader, util
|
|
|
|
ds = create_dataset(params)
|
|
dl = create_dataloader(ds, params)
|
|
i = 0
|
|
for b in tqdm(dl):
|
|
for b_ in range(16):
|
|
pass
|
|
#torchaudio.save(f'{i}_clip1_{b_}.wav', b['clip1'][b_], ds.sampling_rate)
|
|
#torchaudio.save(f'{i}_clip2_{b_}.wav', b['clip2'][b_], ds.sampling_rate)
|
|
#i += 1
|