35bd1ecae4
Still going from high->low, discriminator discerns on low. Next up disc works on high.
313 lines
15 KiB
Python
313 lines
15 KiB
Python
import logging
|
|
from collections import OrderedDict
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch.nn.parallel import DataParallel, DistributedDataParallel
|
|
import models.networks as networks
|
|
import models.lr_scheduler as lr_scheduler
|
|
from models.base_model import BaseModel
|
|
from models.loss import GANLoss
|
|
from apex import amp
|
|
|
|
import torchvision.utils as utils
|
|
import os
|
|
|
|
logger = logging.getLogger('base')
|
|
|
|
|
|
class SRGANModel(BaseModel):
|
|
def __init__(self, opt):
|
|
super(SRGANModel, self).__init__(opt)
|
|
if opt['dist']:
|
|
self.rank = torch.distributed.get_rank()
|
|
else:
|
|
self.rank = -1 # non dist training
|
|
train_opt = opt['train']
|
|
|
|
# define networks and load pretrained models
|
|
self.netG = networks.define_G(opt).to(self.device)
|
|
if self.is_train:
|
|
self.netD = networks.define_D(opt).to(self.device)
|
|
|
|
# define losses, optimizer and scheduler
|
|
if self.is_train:
|
|
# G pixel loss
|
|
if train_opt['pixel_weight'] > 0:
|
|
l_pix_type = train_opt['pixel_criterion']
|
|
if l_pix_type == 'l1':
|
|
self.cri_pix = nn.L1Loss().to(self.device)
|
|
elif l_pix_type == 'l2':
|
|
self.cri_pix = nn.MSELoss().to(self.device)
|
|
else:
|
|
raise NotImplementedError('Loss type [{:s}] not recognized.'.format(l_pix_type))
|
|
self.l_pix_w = train_opt['pixel_weight']
|
|
else:
|
|
logger.info('Remove pixel loss.')
|
|
self.cri_pix = None
|
|
|
|
# G feature loss
|
|
if train_opt['feature_weight'] > 0:
|
|
l_fea_type = train_opt['feature_criterion']
|
|
if l_fea_type == 'l1':
|
|
self.cri_fea = nn.L1Loss().to(self.device)
|
|
elif l_fea_type == 'l2':
|
|
self.cri_fea = nn.MSELoss().to(self.device)
|
|
else:
|
|
raise NotImplementedError('Loss type [{:s}] not recognized.'.format(l_fea_type))
|
|
self.l_fea_w = train_opt['feature_weight']
|
|
self.l_fea_w_decay = train_opt['feature_weight_decay']
|
|
self.l_fea_w_decay_steps = train_opt['feature_weight_decay_steps']
|
|
self.l_fea_w_minimum = train_opt['feature_weight_minimum']
|
|
else:
|
|
logger.info('Remove feature loss.')
|
|
self.cri_fea = None
|
|
if self.cri_fea: # load VGG perceptual loss
|
|
self.netF = networks.define_F(opt, use_bn=False).to(self.device)
|
|
if opt['dist']:
|
|
pass # do not need to use DistributedDataParallel for netF
|
|
else:
|
|
self.netF = DataParallel(self.netF)
|
|
|
|
# GD gan loss
|
|
self.cri_gan = GANLoss(train_opt['gan_type'], 1.0, 0.0).to(self.device)
|
|
self.l_gan_w = train_opt['gan_weight']
|
|
# D_update_ratio and D_init_iters
|
|
self.D_update_ratio = train_opt['D_update_ratio'] if train_opt['D_update_ratio'] else 1
|
|
self.D_init_iters = train_opt['D_init_iters'] if train_opt['D_init_iters'] else 0
|
|
|
|
# optimizers
|
|
# G
|
|
wd_G = train_opt['weight_decay_G'] if train_opt['weight_decay_G'] else 0
|
|
optim_params = []
|
|
for k, v in self.netG.named_parameters(): # can optimize for a part of the model
|
|
if v.requires_grad:
|
|
optim_params.append(v)
|
|
else:
|
|
if self.rank <= 0:
|
|
logger.warning('Params [{:s}] will not optimize.'.format(k))
|
|
self.optimizer_G = torch.optim.Adam(optim_params, lr=train_opt['lr_G'],
|
|
weight_decay=wd_G,
|
|
betas=(train_opt['beta1_G'], train_opt['beta2_G']))
|
|
self.optimizers.append(self.optimizer_G)
|
|
# D
|
|
wd_D = train_opt['weight_decay_D'] if train_opt['weight_decay_D'] else 0
|
|
self.optimizer_D = torch.optim.Adam(self.netD.parameters(), lr=train_opt['lr_D'],
|
|
weight_decay=wd_D,
|
|
betas=(train_opt['beta1_D'], train_opt['beta2_D']))
|
|
self.optimizers.append(self.optimizer_D)
|
|
|
|
# AMP
|
|
[self.netG, self.netD], [self.optimizer_G, self.optimizer_D] = \
|
|
amp.initialize([self.netG, self.netD], [self.optimizer_G, self.optimizer_D], opt_level=self.amp_level, num_losses=3)
|
|
|
|
# DataParallel
|
|
if opt['dist']:
|
|
self.netG = DistributedDataParallel(self.netG, device_ids=[torch.cuda.current_device()])
|
|
else:
|
|
self.netG = DataParallel(self.netG)
|
|
if self.is_train:
|
|
if opt['dist']:
|
|
self.netD = DistributedDataParallel(self.netD,
|
|
device_ids=[torch.cuda.current_device()])
|
|
else:
|
|
self.netD = DataParallel(self.netD)
|
|
self.netG.train()
|
|
self.netD.train()
|
|
|
|
# schedulers
|
|
if train_opt['lr_scheme'] == 'MultiStepLR':
|
|
for optimizer in self.optimizers:
|
|
self.schedulers.append(
|
|
lr_scheduler.MultiStepLR_Restart(optimizer, train_opt['lr_steps'],
|
|
restarts=train_opt['restarts'],
|
|
weights=train_opt['restart_weights'],
|
|
gamma=train_opt['lr_gamma'],
|
|
clear_state=train_opt['clear_state']))
|
|
elif train_opt['lr_scheme'] == 'CosineAnnealingLR_Restart':
|
|
for optimizer in self.optimizers:
|
|
self.schedulers.append(
|
|
lr_scheduler.CosineAnnealingLR_Restart(
|
|
optimizer, train_opt['T_period'], eta_min=train_opt['eta_min'],
|
|
restarts=train_opt['restarts'], weights=train_opt['restart_weights']))
|
|
else:
|
|
raise NotImplementedError('MultiStepLR learning rate scheme is enough.')
|
|
|
|
self.log_dict = OrderedDict()
|
|
|
|
self.print_network() # print network
|
|
self.load() # load G and D if needed
|
|
|
|
def feed_data(self, data, need_GT=True):
|
|
self.var_L = data['LQ'].to(self.device) # LQ
|
|
if need_GT:
|
|
self.var_H = data['GT'].to(self.device) # GT
|
|
input_ref = data['ref'] if 'ref' in data else data['GT']
|
|
self.var_ref = input_ref.to(self.device)
|
|
self.pix = data['PIX'].to(self.device)
|
|
|
|
def optimize_parameters(self, step):
|
|
# G
|
|
for p in self.netD.parameters():
|
|
p.requires_grad = False
|
|
|
|
if step > self.D_init_iters:
|
|
self.optimizer_G.zero_grad()
|
|
self.fake_H = self.netG(self.var_L)
|
|
else:
|
|
self.fake_H = self.pix
|
|
|
|
if step % 50 == 0:
|
|
for i in range(self.var_L.shape[0]):
|
|
utils.save_image(self.var_H[i].cpu().detach(), os.path.join("E:\\4k6k\\temp\hr", "%05i_%02i.png" % (step, i)))
|
|
utils.save_image(self.var_L[i].cpu().detach(), os.path.join("E:\\4k6k\\temp\\lr", "%05i_%02i.png" % (step, i)))
|
|
utils.save_image(self.pix[i].cpu().detach(), os.path.join("E:\\4k6k\\temp\\pix", "%05i_%02i.png" % (step, i)))
|
|
utils.save_image(self.fake_H[i].cpu().detach(), os.path.join("E:\\4k6k\\temp\\gen", "%05i_%02i.png" % (step, i)))
|
|
|
|
l_g_total = 0
|
|
if step % self.D_update_ratio == 0 and step > self.D_init_iters:
|
|
if self.cri_pix: # pixel loss
|
|
l_g_pix = self.l_pix_w * self.cri_pix(self.fake_H, self.pix)
|
|
l_g_total += l_g_pix
|
|
if self.cri_fea: # feature loss
|
|
real_fea = self.netF(self.pix).detach()
|
|
fake_fea = self.netF(self.fake_H)
|
|
l_g_fea = self.l_fea_w * self.cri_fea(fake_fea, real_fea)
|
|
l_g_total += l_g_fea
|
|
|
|
# Decay the influence of the feature loss. As the model trains, the GAN will play a stronger role
|
|
# in the resultant image.
|
|
if step % self.l_fea_w_decay_steps == 0:
|
|
self.l_fea_w = max(self.l_fea_w_minimum, self.l_fea_w * self.l_fea_w_decay)
|
|
|
|
if self.opt['train']['gan_type'] == 'gan':
|
|
pred_g_fake = self.netD(self.fake_H)
|
|
l_g_gan = self.l_gan_w * self.cri_gan(pred_g_fake, True)
|
|
elif self.opt['train']['gan_type'] == 'ragan':
|
|
pred_d_real = self.netD(self.var_ref).detach()
|
|
pred_g_fake = self.netD(self.fake_H)
|
|
l_g_gan = self.l_gan_w * (
|
|
self.cri_gan(pred_d_real - torch.mean(pred_g_fake), False) +
|
|
self.cri_gan(pred_g_fake - torch.mean(pred_d_real), True)) / 2
|
|
l_g_total += l_g_gan
|
|
|
|
with amp.scale_loss(l_g_total, self.optimizer_G, loss_id=0) as l_g_total_scaled:
|
|
l_g_total_scaled.backward()
|
|
self.optimizer_G.step()
|
|
|
|
# D
|
|
for p in self.netD.parameters():
|
|
p.requires_grad = True
|
|
|
|
self.optimizer_D.zero_grad()
|
|
if self.opt['train']['gan_type'] == 'gan':
|
|
# need to forward and backward separately, since batch norm statistics differ
|
|
# real
|
|
pred_d_real = self.netD(self.var_ref)
|
|
l_d_real = self.cri_gan(pred_d_real, True)
|
|
with amp.scale_loss(l_d_real, self.optimizer_D, loss_id=2) as l_d_real_scaled:
|
|
l_d_real_scaled.backward()
|
|
# fake
|
|
pred_d_fake = self.netD(self.fake_H.detach()) # detach to avoid BP to G
|
|
l_d_fake = self.cri_gan(pred_d_fake, False)
|
|
with amp.scale_loss(l_d_fake, self.optimizer_D, loss_id=1) as l_d_fake_scaled:
|
|
l_d_fake_scaled.backward()
|
|
elif self.opt['train']['gan_type'] == 'ragan':
|
|
# pred_d_real = self.netD(self.var_ref)
|
|
# pred_d_fake = self.netD(self.fake_H.detach()) # detach to avoid BP to G
|
|
# l_d_real = self.cri_gan(pred_d_real - torch.mean(pred_d_fake), True)
|
|
# l_d_fake = self.cri_gan(pred_d_fake - torch.mean(pred_d_real), False)
|
|
# l_d_total = (l_d_real + l_d_fake) / 2
|
|
# l_d_total.backward()
|
|
pred_d_fake = self.netD(self.fake_H.detach()).detach()
|
|
pred_d_real = self.netD(self.var_ref)
|
|
l_d_real = self.cri_gan(pred_d_real - torch.mean(pred_d_fake), True) * 0.5
|
|
with amp.scale_loss(l_d_real, self.optimizer_D, loss_id=2) as l_d_real_scaled:
|
|
l_d_real_scaled.backward()
|
|
pred_d_fake = self.netD(self.fake_H.detach())
|
|
l_d_fake = self.cri_gan(pred_d_fake - torch.mean(pred_d_real.detach()), False) * 0.5
|
|
with amp.scale_loss(l_d_fake, self.optimizer_D, loss_id=1) as l_d_fake_scaled:
|
|
l_d_fake_scaled.backward()
|
|
self.optimizer_D.step()
|
|
|
|
# set log
|
|
if step % self.D_update_ratio == 0 and step > self.D_init_iters:
|
|
if self.cri_pix:
|
|
self.log_dict['l_g_pix'] = l_g_pix.item()
|
|
if self.cri_fea:
|
|
self.log_dict['feature_weight'] = self.l_fea_w
|
|
self.log_dict['l_g_fea'] = l_g_fea.item()
|
|
self.log_dict['l_g_gan'] = l_g_gan.item()
|
|
self.log_dict['l_g_total'] = l_g_total.item()
|
|
self.log_dict['l_d_real'] = l_d_real.item()
|
|
self.log_dict['l_d_fake'] = l_d_fake.item()
|
|
self.log_dict['D_fake'] = torch.mean(pred_d_fake.detach())
|
|
|
|
def test(self):
|
|
self.netG.eval()
|
|
with torch.no_grad():
|
|
self.fake_H = self.netG(self.var_L)
|
|
self.netG.train()
|
|
|
|
def get_current_log(self):
|
|
return self.log_dict
|
|
|
|
def get_current_visuals(self, need_GT=True):
|
|
out_dict = OrderedDict()
|
|
out_dict['LQ'] = self.var_L.detach()[0].float().cpu()
|
|
out_dict['rlt'] = self.fake_H.detach()[0].float().cpu()
|
|
if need_GT:
|
|
out_dict['GT'] = self.var_H.detach()[0].float().cpu()
|
|
return out_dict
|
|
|
|
def print_network(self):
|
|
# Generator
|
|
s, n = self.get_network_description(self.netG)
|
|
if isinstance(self.netG, nn.DataParallel) or isinstance(self.netG, DistributedDataParallel):
|
|
net_struc_str = '{} - {}'.format(self.netG.__class__.__name__,
|
|
self.netG.module.__class__.__name__)
|
|
else:
|
|
net_struc_str = '{}'.format(self.netG.__class__.__name__)
|
|
if self.rank <= 0:
|
|
logger.info('Network G structure: {}, with parameters: {:,d}'.format(net_struc_str, n))
|
|
logger.info(s)
|
|
if self.is_train:
|
|
# Discriminator
|
|
s, n = self.get_network_description(self.netD)
|
|
if isinstance(self.netD, nn.DataParallel) or isinstance(self.netD,
|
|
DistributedDataParallel):
|
|
net_struc_str = '{} - {}'.format(self.netD.__class__.__name__,
|
|
self.netD.module.__class__.__name__)
|
|
else:
|
|
net_struc_str = '{}'.format(self.netD.__class__.__name__)
|
|
if self.rank <= 0:
|
|
logger.info('Network D structure: {}, with parameters: {:,d}'.format(
|
|
net_struc_str, n))
|
|
logger.info(s)
|
|
|
|
if self.cri_fea: # F, Perceptual Network
|
|
s, n = self.get_network_description(self.netF)
|
|
if isinstance(self.netF, nn.DataParallel) or isinstance(
|
|
self.netF, DistributedDataParallel):
|
|
net_struc_str = '{} - {}'.format(self.netF.__class__.__name__,
|
|
self.netF.module.__class__.__name__)
|
|
else:
|
|
net_struc_str = '{}'.format(self.netF.__class__.__name__)
|
|
if self.rank <= 0:
|
|
logger.info('Network F structure: {}, with parameters: {:,d}'.format(
|
|
net_struc_str, n))
|
|
logger.info(s)
|
|
|
|
def load(self):
|
|
load_path_G = self.opt['path']['pretrain_model_G']
|
|
if load_path_G is not None:
|
|
logger.info('Loading model for G [{:s}] ...'.format(load_path_G))
|
|
self.load_network(load_path_G, self.netG, self.opt['path']['strict_load'])
|
|
load_path_D = self.opt['path']['pretrain_model_D']
|
|
if self.opt['is_train'] and load_path_D is not None:
|
|
logger.info('Loading model for D [{:s}] ...'.format(load_path_D))
|
|
self.load_network(load_path_D, self.netD, self.opt['path']['strict_load'])
|
|
|
|
def save(self, iter_step):
|
|
self.save_network(self.netG, 'G', iter_step)
|
|
self.save_network(self.netD, 'D', iter_step)
|