DL-Art-School/codes/models/steps/steps.py
James Betker 4b4d08bdec Enable testing in ExtensibleTrainer, fix it in SRGAN_model
Also compute fea loss for this.
2020-08-31 09:41:48 -06:00

123 lines
5.1 KiB
Python

from utils.loss_accumulator import LossAccumulator
from torch.nn import Module
import logging
from models.steps.losses import create_generator_loss
import torch
from apex import amp
from collections import OrderedDict
from .injectors import create_injector
logger = logging.getLogger('base')
# Defines the expected API for a single training step
class ConfigurableStep(Module):
def __init__(self, opt_step, env):
super(ConfigurableStep, self).__init__()
self.step_opt = opt_step
self.env = env
self.opt = env['opt']
self.gen_outputs = opt_step['generator_outputs']
self.loss_accumulator = LossAccumulator()
self.optimizers = None
self.injectors = []
if 'injectors' in self.step_opt.keys():
for inj_name, injector in self.step_opt['injectors'].items():
self.injectors.append(create_injector(injector, env))
losses = []
self.weights = {}
if 'losses' in self.step_opt.keys():
for loss_name, loss in self.step_opt['losses'].items():
losses.append((loss_name, create_generator_loss(loss, env)))
self.weights[loss_name] = loss['weight']
self.losses = OrderedDict(losses)
# Subclasses should override this to define individual optimizers. They should all go into self.optimizers.
# This default implementation defines a single optimizer for all Generator parameters.
# Must be called after networks are initialized and wrapped.
def define_optimizers(self):
self.training_net = self.env['generators'][self.step_opt['training']] \
if self.step_opt['training'] in self.env['generators'].keys() \
else self.env['discriminators'][self.step_opt['training']]
optim_params = []
for k, v in self.training_net.named_parameters(): # can optimize for a part of the model
if v.requires_grad:
optim_params.append(v)
else:
if self.env['rank'] <= 0:
logger.warning('Params [{:s}] will not optimize.'.format(k))
opt = torch.optim.Adam(optim_params, lr=self.step_opt['lr'],
weight_decay=self.step_opt['weight_decay'],
betas=(self.step_opt['beta1'], self.step_opt['beta2']))
self.optimizers = [opt]
# Returns all optimizers used in this step.
def get_optimizers(self):
assert self.optimizers is not None
return self.optimizers
# Returns optimizers which are opting in for default LR scheduling.
def get_optimizers_with_default_scheduler(self):
assert self.optimizers is not None
return self.optimizers
# Returns the names of the networks this step will train. Other networks will be frozen.
def get_networks_trained(self):
return [self.step_opt['training']]
# Performs all forward and backward passes for this step given an input state. All input states are lists of
# chunked tensors. Use grad_accum_step to dereference these steps. Should return a dict of tensors that later
# steps might use. These tensors are automatically detached and accumulated into chunks.
def do_forward_backward(self, state, grad_accum_step, amp_loss_id, backward=True):
new_state = {}
# Prepare a de-chunked state dict which will be used for the injectors & losses.
local_state = {}
for k, v in state.items():
local_state[k] = v[grad_accum_step]
local_state.update(new_state)
# Inject in any extra dependencies.
for inj in self.injectors:
injected = inj(local_state)
local_state.update(injected)
new_state.update(injected)
if backward:
# Finally, compute the losses.
total_loss = 0
for loss_name, loss in self.losses.items():
l = loss(self.training_net, local_state)
total_loss += l * self.weights[loss_name]
# Record metrics.
self.loss_accumulator.add_loss(loss_name, l)
for n, v in loss.extra_metrics():
self.loss_accumulator.add_loss("%s_%s" % (loss_name, n), v)
self.loss_accumulator.add_loss("%s_total" % (self.step_opt['training'],), total_loss)
# Scale the loss down by the accumulation factor.
total_loss = total_loss / self.env['mega_batch_factor']
# Get dem grads!
with amp.scale_loss(total_loss, self.optimizers, amp_loss_id) as scaled_loss:
scaled_loss.backward()
# Detach all state variables. Within the step, gradients can flow. Once these variables leave the step
# we must release the gradients.
for k, v in new_state.items():
if isinstance(v, torch.Tensor):
new_state[k] = v.detach()
return new_state
# Performs the optimizer step after all gradient accumulation is completed. Default implementation simply steps()
# all self.optimizers.
def do_step(self):
for opt in self.optimizers:
opt.step()
def get_metrics(self):
return self.loss_accumulator.as_dict()