DL-Art-School/codes/models/audio/music/gpt_music2.py
2022-07-13 21:26:25 -06:00

177 lines
7.5 KiB
Python

import torch
import torch.nn.functional as F
from torch import nn
from transformers import GPT2Config, GPT2Model
from models.arch_util import AttentionBlock, ResBlock
from models.audio.tts.lucidrains_dvae import DiscreteVAE
from trainer.networks import register_model
from utils.util import opt_get, ceil_multiple, print_network
class UpperEncoder(nn.Module):
def __init__(self,
spec_dim,
hidden_dim,
embedding_dim,
checkpointing_enabled=True,
):
super().__init__()
attn = []
def edim(m):
dd = min(spec_dim + m * 128, hidden_dim)
return ceil_multiple(dd, 8)
self.downsampler = nn.Sequential(
ResBlock(spec_dim, out_channels=edim(1), use_conv=True, dims=1, down=True, checkpointing_enabled=checkpointing_enabled),
ResBlock(edim(1), out_channels=edim(2), use_conv=True, dims=1, down=True, checkpointing_enabled=checkpointing_enabled),
ResBlock(edim(2), out_channels=edim(3), use_conv=True, dims=1, down=True, checkpointing_enabled=checkpointing_enabled),
ResBlock(edim(3), out_channels=edim(4), use_conv=True, dims=1, checkpointing_enabled=checkpointing_enabled),
ResBlock(edim(4), out_channels=hidden_dim, use_conv=True, dims=1, down=True, checkpointing_enabled=checkpointing_enabled))
self.encoder = nn.Sequential(
AttentionBlock(hidden_dim, 4, do_activation=True),
ResBlock(hidden_dim, out_channels=hidden_dim, use_conv=True, dims=1, checkpointing_enabled=checkpointing_enabled),
AttentionBlock(hidden_dim, 4, do_activation=True),
ResBlock(hidden_dim, out_channels=hidden_dim, use_conv=True, dims=1, checkpointing_enabled=checkpointing_enabled),
AttentionBlock(hidden_dim, 4, do_activation=True),
ResBlock(hidden_dim, out_channels=hidden_dim, use_conv=True, dims=1, checkpointing_enabled=checkpointing_enabled),
nn.GroupNorm(8, hidden_dim),
nn.SiLU(),
nn.Conv1d(hidden_dim, embedding_dim, 1),
nn.Tanh(),
)
def forward(self, x):
h = self.downsampler(x)
h = self.encoder(h)
return h
class GptMusicLower(nn.Module):
def __init__(self, dim, layers, encoder_out_dim, dropout=0, num_target_vectors=8192, fp16=True, num_vaes=4, vqargs={}):
super().__init__()
self.num_vaes = num_vaes
self.start_token = nn.Parameter(torch.randn(1, 1, dim))
self.config = GPT2Config(vocab_size=1, n_positions=8192, n_embd=dim, n_layer=layers, n_head=dim//64,
n_inner=dim*2, attn_pdrop=dropout, resid_pdrop=dropout, gradient_checkpointing=True,
use_cache=False)
self.target_quantizers = nn.ModuleList([DiscreteVAE(**vqargs).eval() for _ in range(num_vaes)])
self.upper_encoder = UpperEncoder(256, dim, encoder_out_dim)
self.encoder_projector = nn.Conv1d(encoder_out_dim, dim, 1)
self.fp16 = fp16
# Freeze the target quantizer.
for p in self.target_quantizers.parameters():
p.DO_NOT_TRAIN = True
p.requires_grad = False
# And delete the decoder, which is unused.
for tq in self.target_quantizers:
del tq.decoder
self.gpt = GPT2Model(self.config)
del self.gpt.wte # Unused, we'll do our own embeddings.
self.embeddings = nn.ModuleList([nn.Embedding(num_target_vectors, dim // num_vaes) for _ in range(num_vaes)])
self.heads = nn.ModuleList([nn.Linear(dim, num_target_vectors) for _ in range(num_vaes)])
def forward(self, mel, return_latent=False):
unused_params = []
with torch.no_grad():
codes = []
partition_size = mel.shape[1] // len(self.target_quantizers)
for i, q in enumerate(self.target_quantizers):
mel_partition = mel[:, i*partition_size:(i+1)*partition_size]
codes.append(q.get_codebook_indices(mel_partition))
codes = torch.stack(codes, dim=-1)
upper_vector = self.upper_encoder(mel)
upper_vector = self.encoder_projector(upper_vector)
# WTB slerp
upper_vector = F.interpolate(upper_vector, size=codes.shape[1], mode='linear')
upper_vector = upper_vector.permute(0,2,1)
inputs = codes[:, :-1]
targets = codes
upper_vector = upper_vector[:, :-1]
h = [embedding(inputs[:, :, i]) for i, embedding in enumerate(self.embeddings)]
h = torch.cat(h, dim=-1) + upper_vector
with torch.autocast(mel.device.type, enabled=self.fp16):
# Stick the conditioning embedding on the front of the input sequence.
# The transformer will learn how to integrate it.
# This statement also serves to pre-pad the inputs by one token, which is the basis of the next-token-prediction task. IOW: this is the "START" token.
h = torch.cat([self.start_token.repeat(h.shape[0], 1, 1), h], dim=1)
h = self.gpt(inputs_embeds=h, return_dict=True).last_hidden_state
if return_latent:
return h.float()
losses = 0
for i, head in enumerate(self.heads):
logits = head(h).permute(0,2,1)
loss = F.cross_entropy(logits, targets[:,:,i])
losses = losses + loss
unused_adder = 0
for p in unused_params:
unused_adder = unused_adder + p.mean() * 0
losses = losses + unused_adder
return losses / self.num_vaes
def get_grad_norm_parameter_groups(self):
groups = {
'gpt': list(self.gpt.parameters()),
'heads': list(self.heads.parameters()),
'embeddings': list(self.embeddings.parameters()),
'upper_latent_encoder': list(self.upper_encoder.encoder.parameters()),
'upper_latent_downsampler': list(self.upper_encoder.downsampler.parameters()),
}
return groups
@register_model
def register_music_gpt_lower2(opt_net, opt):
return GptMusicLower(**opt_get(opt_net, ['kwargs'], {}))
def test_lower():
model = GptMusicLower(dim=1024, encoder_out_dim=256, layers=16, fp16=False, num_target_vectors=8192, num_vaes=4,
vqargs= {'positional_dims': 1, 'channels': 64,
'hidden_dim': 512, 'num_resnet_blocks': 3, 'codebook_dim': 512, 'num_tokens': 8192,
'num_layers': 0, 'record_codes': True, 'kernel_size': 3, 'use_transposed_convs': False,
})
quants = ['X:\\dlas\\experiments\\music_vqvaes\\train_lrdvae_music_low\\models\\7500_generator.pth',
'X:\\dlas\\experiments\\music_vqvaes\\train_lrdvae_music_mid_low\\models\\11000_generator.pth',
'X:\\dlas\\experiments\\music_vqvaes\\train_lrdvae_music_mid_high\\models\\11500_generator.pth',
'X:\\dlas\\experiments\\music_vqvaes\\train_lrdvae_music_high\\models\\11500_generator.pth']
for i, qfile in enumerate(quants):
quant_weights = torch.load(qfile)
model.target_quantizers[i].load_state_dict(quant_weights, strict=False)
torch.save(model.state_dict(), 'sample.pth')
print_network(model)
mel = torch.randn(2,256,400)
model(mel)
pg = model.get_grad_norm_parameter_groups()
t = 0
for k, vs in pg.items():
s = 0
for v in vs:
m = 1
for d in v.shape:
m *= d
s += m
t += s
print(k, s/1000000)
print(t/1000000)
if __name__ == '__main__':
test_lower()