6084915af8
Adds support for GD models, courtesy of some maths from openai. Also: - Fixes requirement for eval{} even when it isn't being used - Adds support for denormalizing an imagenet norm
239 lines
10 KiB
Python
239 lines
10 KiB
Python
import glob
|
|
import itertools
|
|
import random
|
|
|
|
import cv2
|
|
import kornia
|
|
import numpy as np
|
|
import pytorch_ssim
|
|
import torch
|
|
import os
|
|
|
|
import torchvision
|
|
from torch.utils.data import DataLoader
|
|
from torchvision.transforms import Normalize
|
|
from tqdm import tqdm
|
|
|
|
from data import util
|
|
# Builds a dataset created from a simple folder containing a list of training/test/validation images.
|
|
from data.image_corruptor import ImageCorruptor
|
|
from data.image_label_parser import VsNetImageLabeler
|
|
from utils.util import opt_get
|
|
|
|
|
|
class ImageFolderDataset:
|
|
def __init__(self, opt):
|
|
self.opt = opt
|
|
self.corruptor = ImageCorruptor(opt)
|
|
self.target_hq_size = opt['target_size'] if 'target_size' in opt.keys() else None
|
|
self.multiple = opt['force_multiple'] if 'force_multiple' in opt.keys() else 1
|
|
self.scale = opt['scale']
|
|
self.paths = opt['paths']
|
|
self.corrupt_before_downsize = opt['corrupt_before_downsize'] if 'corrupt_before_downsize' in opt.keys() else False
|
|
self.fetch_alt_image = opt['fetch_alt_image'] # If specified, this dataset will attempt to find a second image
|
|
# from the same video source. Search for 'fetch_alt_image' for more info.
|
|
self.skip_lq = opt_get(opt, ['skip_lq'], False)
|
|
self.disable_flip = opt_get(opt, ['disable_flip'], False)
|
|
self.rgb_n1_to_1 = opt_get(opt, ['rgb_n1_to_1'], False)
|
|
if 'normalize' in opt.keys():
|
|
if opt['normalize'] == 'stylegan2_norm':
|
|
self.normalize = Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
|
|
elif opt['normalize'] == 'imagenet':
|
|
self.normalize = Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225), inplace=True)
|
|
else:
|
|
raise Exception('Unsupported normalize')
|
|
else:
|
|
self.normalize = None
|
|
assert (self.target_hq_size // self.scale) % self.multiple == 0 # If we dont throw here, we get some really obscure errors.
|
|
if not isinstance(self.paths, list):
|
|
self.paths = [self.paths]
|
|
self.weights = [1]
|
|
else:
|
|
self.weights = opt['weights']
|
|
|
|
if 'labeler' in opt.keys():
|
|
if opt['labeler']['type'] == 'patch_labels':
|
|
self.labeler = VsNetImageLabeler(opt['labeler']['label_file'])
|
|
assert len(self.paths) == 1 # Only a single base-path is supported for labeled images.
|
|
self.image_paths = self.labeler.get_labeled_paths(self.paths[0])
|
|
else:
|
|
self.labeler = None
|
|
|
|
# Just scan the given directory for images of standard types.
|
|
supported_types = ['jpg', 'jpeg', 'png', 'gif']
|
|
self.image_paths = []
|
|
for path, weight in zip(self.paths, self.weights):
|
|
cache_path = os.path.join(path, 'cache.pth')
|
|
if os.path.exists(cache_path):
|
|
imgs = torch.load(cache_path)
|
|
else:
|
|
print("Building image folder cache, this can take some time for large datasets..")
|
|
imgs = util.get_image_paths('img', path)[0]
|
|
torch.save(imgs, cache_path)
|
|
for w in range(weight):
|
|
self.image_paths.extend(imgs)
|
|
self.len = len(self.image_paths)
|
|
|
|
def get_paths(self):
|
|
return self.image_paths
|
|
|
|
# Given an HQ square of arbitrary size, resizes it to specifications from opt.
|
|
def resize_hq(self, imgs_hq):
|
|
# Enforce size constraints
|
|
h, w, _ = imgs_hq[0].shape
|
|
|
|
if self.target_hq_size is not None and self.target_hq_size != h:
|
|
hqs_adjusted = []
|
|
for hq in imgs_hq:
|
|
# It is assumed that the target size is a square.
|
|
target_size = (self.target_hq_size, self.target_hq_size)
|
|
hqs_adjusted.append(cv2.resize(hq, target_size, interpolation=cv2.INTER_AREA))
|
|
h, w = self.target_hq_size, self.target_hq_size
|
|
else:
|
|
hqs_adjusted = imgs_hq
|
|
hq_multiple = self.multiple * self.scale # Multiple must apply to LQ image.
|
|
if h % hq_multiple != 0 or w % hq_multiple != 0:
|
|
hqs_conformed = []
|
|
for hq in hqs_adjusted:
|
|
h, w = (h - h % hq_multiple), (w - w % hq_multiple)
|
|
hqs_conformed.append(hq[:h, :w, :])
|
|
return hqs_conformed
|
|
return hqs_adjusted
|
|
|
|
def synthesize_lq(self, hs):
|
|
h, w, _ = hs[0].shape
|
|
ls = []
|
|
local_scale = self.scale
|
|
if self.corrupt_before_downsize:
|
|
# You can downsize to a specified scale, then corrupt, then continue the downsize further using this option.
|
|
if 'corrupt_before_downsize_factor' in self.opt.keys():
|
|
special_factor = self.opt['corrupt_before_downsize_factor']
|
|
hs = [cv2.resize(h_, (h // special_factor, w // special_factor), interpolation=cv2.INTER_AREA) for h_ in hs]
|
|
local_scale = local_scale // special_factor
|
|
else:
|
|
hs = [h.copy() for h in hs]
|
|
hs = self.corruptor.corrupt_images(hs)
|
|
for hq in hs:
|
|
h, w, _ = hq.shape
|
|
ls.append(cv2.resize(hq, (h // local_scale, w // local_scale), interpolation=cv2.INTER_AREA))
|
|
# Corrupt the LQ image (only in eval mode)
|
|
if not self.corrupt_before_downsize:
|
|
ls = self.corruptor.corrupt_images(ls)
|
|
return ls
|
|
|
|
def __len__(self):
|
|
return self.len
|
|
|
|
def __getitem__(self, item):
|
|
hq = util.read_img(None, self.image_paths[item], rgb=True)
|
|
if not self.disable_flip and random.random() < .5:
|
|
hq = hq[:, ::-1, :]
|
|
|
|
# We must convert the image into a square.
|
|
h, w, _ = hq.shape
|
|
dim = min(h, w)
|
|
hq = hq[(h - dim) // 2:dim + (h - dim) // 2, (w - dim) // 2:dim + (w - dim) // 2, :]
|
|
|
|
if self.labeler:
|
|
assert hq.shape[0] == hq.shape[1] # This just has not been accomodated yet.
|
|
dim = hq.shape[0]
|
|
|
|
hs = self.resize_hq([hq])
|
|
if not self.skip_lq:
|
|
for_lq = [hs[0]]
|
|
|
|
# Convert to torch tensor
|
|
hq = torch.from_numpy(np.ascontiguousarray(np.transpose(hs[0], (2, 0, 1)))).float()
|
|
|
|
out_dict = {'hq': hq, 'LQ_path': self.image_paths[item], 'HQ_path': self.image_paths[item], 'has_alt': False}
|
|
|
|
if self.fetch_alt_image:
|
|
# This works by assuming a specific filename structure as would produced by ffmpeg. ex:
|
|
# 'Candied Walnutsxjktqhr_SYc.webm_00000478.jpg` and
|
|
# 'Candied Walnutsxjktqhr_SYc.webm_00000479.jpg` and
|
|
# 'Candied Walnutsxjktqhr_SYc.webm_00000480.jpg`
|
|
# The basic format is `<anything>%08d.<extension>`. This logic parses off that 8 digit number. If it is
|
|
# not found, the 'alt_image' returned is just the current image. If it is found, the algorithm searches for
|
|
# an image one number higher. If it is found - it is returned in the 'alt_hq' and 'alt_lq' keys, else the
|
|
# current image is put in those keys.
|
|
|
|
imname_parts = self.image_paths[item]
|
|
while '.jpg.jpg' in imname_parts:
|
|
imname_parts = imname_parts.replace(".jpg.jpg", ".jpg") # Hack workaround to my own bug.
|
|
imname_parts = imname_parts.split('.')
|
|
if len(imname_parts) >= 2 and len(imname_parts[-2]) > 8:
|
|
try:
|
|
imnumber = int(imname_parts[-2][-8:])
|
|
# When we're dealing with images in the 1M range, it's straight up faster to attempt to just open
|
|
# the file rather than searching the path list. Let the exception handler below do its work.
|
|
next_img = self.image_paths[item].replace(str(imnumber), str(imnumber+1))
|
|
alt_hq = util.read_img(None, next_img, rgb=True)
|
|
alt_hs = self.resize_hq([alt_hq])
|
|
alt_hq = torch.from_numpy(np.ascontiguousarray(np.transpose(alt_hs[0], (2, 0, 1)))).float()
|
|
out_dict['has_alt'] = True
|
|
if not self.skip_lq:
|
|
for_lq.append(alt_hs[0])
|
|
except:
|
|
alt_hq = hq
|
|
if not self.skip_lq:
|
|
for_lq.append(hs[0])
|
|
else:
|
|
alt_hq = hq
|
|
if not self.skip_lq:
|
|
for_lq.append(hs[0])
|
|
out_dict['alt_hq'] = alt_hq
|
|
|
|
if not self.skip_lq:
|
|
lqs = self.synthesize_lq(for_lq)
|
|
ls = lqs[0]
|
|
out_dict['lq'] = torch.from_numpy(np.ascontiguousarray(np.transpose(ls, (2, 0, 1)))).float()
|
|
if len(lqs) > 1:
|
|
alt_lq = lqs[1]
|
|
out_dict['alt_lq'] = torch.from_numpy(np.ascontiguousarray(np.transpose(alt_lq, (2, 0, 1)))).float()
|
|
|
|
|
|
if self.labeler:
|
|
base_file = self.image_paths[item].replace(self.paths[0], "")
|
|
while base_file.startswith("\\"):
|
|
base_file = base_file[1:]
|
|
assert dim % hq.shape[1] == 0
|
|
lbls, lbl_masks, lblstrings = self.labeler.get_labels_as_tensor(hq, base_file, dim // hq.shape[1])
|
|
out_dict['labels'] = lbls
|
|
out_dict['labels_mask'] = lbl_masks
|
|
out_dict['label_strings'] = lblstrings
|
|
|
|
for k, v in out_dict.items():
|
|
if isinstance(v, torch.Tensor) and len(v.shape) == 3:
|
|
if self.normalize:
|
|
v = self.normalize(v)
|
|
if self.rgb_n1_to_1:
|
|
v = v * 2 - 1
|
|
out_dict[k] = v
|
|
|
|
return out_dict
|
|
|
|
if __name__ == '__main__':
|
|
opt = {
|
|
'name': 'amalgam',
|
|
'paths': ['E:\\4k6k\\datasets\\ns_images\\256_unsupervised'],
|
|
'weights': [1],
|
|
'target_size': 256,
|
|
'force_multiple': 1,
|
|
'scale': 2,
|
|
'corrupt_before_downsize': True,
|
|
'fetch_alt_image': True,
|
|
'disable_flip': True,
|
|
'fixed_corruptions': [ 'jpeg-broad' ],
|
|
'num_corrupts_per_image': 0,
|
|
'corruption_blur_scale': 0
|
|
}
|
|
|
|
ds = DataLoader(ImageFolderDataset(opt), shuffle=True, num_workers=2)
|
|
import os
|
|
output_path = 'E:\\4k6k\\datasets\\ns_images\\128_unsupervised'
|
|
os.makedirs(output_path, exist_ok=True)
|
|
for i, d in tqdm(enumerate(ds)):
|
|
lq = d['lq']
|
|
torchvision.utils.save_image(lq[:,:,16:-16,:], f'{output_path}\\{i+500000}.png')
|
|
if i >= 200000:
|
|
break |