DL-Art-School/codes/trainer/optimizers/sgd.py
2021-08-25 18:00:43 -06:00

73 lines
2.7 KiB
Python

import torch
from torch.optim import Optimizer
class SGDNoBiasMomentum(Optimizer):
r"""
Copy of pytorch implementation of SGD with a modification which turns off momentum for params marked
with `is_norm` or `is_bias`.
"""
def __init__(self, params, lr, momentum=0, dampening=0,
weight_decay=0, nesterov=False):
if lr < 0.0:
raise ValueError("Invalid learning rate: {}".format(lr))
if momentum < 0.0:
raise ValueError("Invalid momentum value: {}".format(momentum))
if weight_decay < 0.0:
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
defaults = dict(lr=lr, momentum=momentum, dampening=dampening,
weight_decay=weight_decay, nesterov=nesterov)
if nesterov and (momentum <= 0 or dampening != 0):
raise ValueError("Nesterov momentum requires a momentum and zero dampening")
super().__init__(params, defaults)
def __setstate__(self, state):
super().__setstate__(state)
for group in self.param_groups:
group.setdefault('nesterov', False)
@torch.no_grad()
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
for group in self.param_groups:
weight_decay = group['weight_decay']
momentum = group['momentum']
dampening = group['dampening']
nesterov = group['nesterov']
for p in group['params']:
if p.grad is None:
continue
d_p = p.grad
if weight_decay != 0:
d_p = d_p.add(p, alpha=weight_decay)
# **this is the only modification over standard torch.optim.SGD:
is_bn_or_bias = (hasattr(p, 'is_norm') and p.is_norm) or (hasattr(p, 'is_bias') and p.is_bias)
if not is_bn_or_bias and momentum != 0:
param_state = self.state[p]
if 'momentum_buffer' not in param_state:
buf = param_state['momentum_buffer'] = torch.clone(d_p).detach()
else:
buf = param_state['momentum_buffer']
buf.mul_(momentum).add_(d_p, alpha=1 - dampening)
if nesterov:
d_p = d_p.add(buf, alpha=momentum)
else:
d_p = buf
p.add_(d_p, alpha=-group['lr'])
return loss