DL-Art-School/codes/models/archs/arch_util.py
James Betker 5b8a77f02c Discriminator part 1
New discriminator. Includes spectral norming.
2020-04-28 23:00:29 -06:00

219 lines
7.4 KiB
Python

import torch
import torch.nn as nn
import torch.nn.init as init
import torch.nn.functional as F
import torch.nn.utils.spectral_norm as SpectralNorm
from math import sqrt
def scale_conv_weights_fixup(conv, residual_block_count, m=2):
k = conv.kernel_size[0]
n = conv.out_channels
scaling_factor = residual_block_count ** (-1.0 / (2 * m - 2))
sigma = sqrt(2 / (k * k * n)) * scaling_factor
conv.weight.data = conv.weight.data * sigma
return conv
def initialize_weights(net_l, scale=1):
if not isinstance(net_l, list):
net_l = [net_l]
for net in net_l:
for m in net.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, a=0, mode='fan_in')
m.weight.data *= scale # for residual block
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
init.kaiming_normal_(m.weight, a=0, mode='fan_in')
m.weight.data *= scale
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias.data, 0.0)
def make_layer(block, n_layers):
layers = []
for _ in range(n_layers):
layers.append(block())
return nn.Sequential(*layers)
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
class FixupBasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(FixupBasicBlock, self).__init__()
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
self.bias1a = nn.Parameter(torch.zeros(1))
self.conv1 = conv3x3(inplanes, planes, stride)
self.bias1b = nn.Parameter(torch.zeros(1))
self.relu = nn.ReLU(inplace=True)
self.bias2a = nn.Parameter(torch.zeros(1))
self.conv2 = conv3x3(planes, planes)
self.scale = nn.Parameter(torch.ones(1))
self.bias2b = nn.Parameter(torch.zeros(1))
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x + self.bias1a)
out = self.relu(out + self.bias1b)
out = self.conv2(out + self.bias2a)
out = out * self.scale + self.bias2b
if self.downsample is not None:
identity = self.downsample(x + self.bias1a)
out += identity
out = self.relu(out)
return out
class FixupBottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(FixupBottleneck, self).__init__()
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
self.bias1a = nn.Parameter(torch.zeros(1))
self.conv1 = conv1x1(inplanes, planes)
self.bias1b = nn.Parameter(torch.zeros(1))
self.bias2a = nn.Parameter(torch.zeros(1))
self.conv2 = conv3x3(planes, planes, stride)
self.bias2b = nn.Parameter(torch.zeros(1))
self.bias3a = nn.Parameter(torch.zeros(1))
self.conv3 = conv1x1(planes, planes * self.expansion)
self.scale = nn.Parameter(torch.ones(1))
self.bias3b = nn.Parameter(torch.zeros(1))
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x + self.bias1a)
out = self.relu(out + self.bias1b)
out = self.conv2(out + self.bias2a)
out = self.relu(out + self.bias2b)
out = self.conv3(out + self.bias3a)
out = out * self.scale + self.bias3b
if self.downsample is not None:
identity = self.downsample(x + self.bias1a)
out += identity
out = self.relu(out)
return out
class ResidualBlock(nn.Module):
'''Residual block with BN
---Conv-BN-ReLU-Conv-+-
|________________|
'''
def __init__(self, nf=64):
super(ResidualBlock, self).__init__()
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
self.conv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
self.BN1 = nn.BatchNorm2d(nf)
self.conv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
self.BN2 = nn.BatchNorm2d(nf)
# initialization
initialize_weights([self.conv1, self.conv2], 0.1)
def forward(self, x):
identity = x
out = self.lrelu(self.BN1(self.conv1(x)))
out = self.BN2(self.conv2(out))
return identity + out
class ResidualBlockSpectralNorm(nn.Module):
'''Residual block with Spectral Normalization.
---SpecConv-ReLU-SpecConv-+-
|________________|
'''
def __init__(self, nf, total_residual_blocks):
super(ResidualBlockSpectralNorm, self).__init__()
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
self.conv1 = SpectralNorm(nn.Conv2d(nf, nf, 3, 1, 1, bias=True))
self.conv2 = SpectralNorm(nn.Conv2d(nf, nf, 3, 1, 1, bias=True))
# Initialize first.
initialize_weights([self.conv1, self.conv2], 1)
# Then perform fixup scaling
self.conv1 = scale_conv_weights_fixup(self.conv1, total_residual_blocks)
self.conv2 = scale_conv_weights_fixup(self.conv2, total_residual_blocks)
def forward(self, x):
identity = x
out = self.lrelu(self.conv1(x))
out = self.conv2(out)
return identity + out
class ResidualBlock_noBN(nn.Module):
'''Residual block w/o BN
---Conv-ReLU-Conv-+-
|________________|
'''
def __init__(self, nf=64):
super(ResidualBlock_noBN, self).__init__()
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
self.conv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
self.conv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
# initialization
initialize_weights([self.conv1, self.conv2], 0.1)
def forward(self, x):
identity = x
out = self.lrelu(self.conv1(x))
out = self.conv2(out)
return identity + out
def flow_warp(x, flow, interp_mode='bilinear', padding_mode='zeros'):
"""Warp an image or feature map with optical flow
Args:
x (Tensor): size (N, C, H, W)
flow (Tensor): size (N, H, W, 2), normal value
interp_mode (str): 'nearest' or 'bilinear'
padding_mode (str): 'zeros' or 'border' or 'reflection'
Returns:
Tensor: warped image or feature map
"""
assert x.size()[-2:] == flow.size()[1:3]
B, C, H, W = x.size()
# mesh grid
grid_y, grid_x = torch.meshgrid(torch.arange(0, H), torch.arange(0, W))
grid = torch.stack((grid_x, grid_y), 2).float() # W(x), H(y), 2
grid.requires_grad = False
grid = grid.type_as(x)
vgrid = grid + flow
# scale grid to [-1,1]
vgrid_x = 2.0 * vgrid[:, :, :, 0] / max(W - 1, 1) - 1.0
vgrid_y = 2.0 * vgrid[:, :, :, 1] / max(H - 1, 1) - 1.0
vgrid_scaled = torch.stack((vgrid_x, vgrid_y), dim=3)
output = F.grid_sample(x, vgrid_scaled, mode=interp_mode, padding_mode=padding_mode)
return output