DL-Art-School/codes/options/options.py
James Betker 44b89330c2 Support inference across batches, support inference on cpu, checkpoint
This is a checkpoint of a set of long tests with reduced-complexity networks. Some takeaways:
1) A full GAN using the resnet discriminator does appear to converge, but the quality is capped.
2) Likewise, a combination GAN/feature loss does not converge. The feature loss is optimized but
    the model appears unable to fight the discriminator, so the G-loss steadily increases.

Going forwards, I want to try some bigger models. In particular, I want to change the generator
to increase complexity and capacity. I also want to add skip connections between the
disc and generator.
2020-05-04 08:48:25 -06:00

118 lines
4.5 KiB
Python

import os
import os.path as osp
import logging
import yaml
from utils.util import OrderedYaml
Loader, Dumper = OrderedYaml()
def parse(opt_path, is_train=True):
with open(opt_path, mode='r') as f:
opt = yaml.load(f, Loader=Loader)
# export CUDA_VISIBLE_DEVICES
if 'gpu_ids' in opt.keys():
gpu_list = ','.join(str(x) for x in opt['gpu_ids'])
os.environ['CUDA_VISIBLE_DEVICES'] = gpu_list
print('export CUDA_VISIBLE_DEVICES=' + gpu_list)
opt['is_train'] = is_train
if opt['distortion'] == 'sr' or opt['distortion'] == 'downsample':
scale = opt['scale']
# datasets
for phase, dataset in opt['datasets'].items():
phase = phase.split('_')[0]
dataset['phase'] = phase
if opt['distortion'] == 'sr' or opt['distortion'] == 'downsample':
dataset['scale'] = scale
is_lmdb = False
if dataset.get('dataroot_GT', None) is not None:
dataset['dataroot_GT'] = osp.expanduser(dataset['dataroot_GT'])
if dataset['dataroot_GT'].endswith('lmdb'):
is_lmdb = True
if dataset.get('dataroot_LQ', None) is not None:
dataset['dataroot_LQ'] = osp.expanduser(dataset['dataroot_LQ'])
if dataset['dataroot_LQ'].endswith('lmdb'):
is_lmdb = True
dataset['data_type'] = 'lmdb' if is_lmdb else 'img'
if dataset['mode'].endswith('mc'): # for memcached
dataset['data_type'] = 'mc'
dataset['mode'] = dataset['mode'].replace('_mc', '')
# path
for key, path in opt['path'].items():
if path and key in opt['path'] and key != 'strict_load':
opt['path'][key] = osp.expanduser(path)
opt['path']['root'] = osp.abspath(osp.join(__file__, osp.pardir, osp.pardir, osp.pardir))
if is_train:
experiments_root = osp.join(opt['path']['root'], 'experiments', opt['name'])
opt['path']['experiments_root'] = experiments_root
opt['path']['models'] = osp.join(experiments_root, 'models')
opt['path']['training_state'] = osp.join(experiments_root, 'training_state')
opt['path']['log'] = experiments_root
opt['path']['val_images'] = osp.join(experiments_root, 'val_images')
# change some options for debug mode
if 'debug' in opt['name']:
opt['train']['val_freq'] = 8
opt['logger']['print_freq'] = 1
opt['logger']['save_checkpoint_freq'] = 8
else: # test
results_root = osp.join(opt['path']['root'], 'results', opt['name'])
opt['path']['results_root'] = results_root
opt['path']['log'] = results_root
# network
if opt['distortion'] == 'sr' or opt['distortion'] == 'downsample':
opt['network_G']['scale'] = scale
return opt
def dict2str(opt, indent_l=1):
'''dict to string for logger'''
msg = ''
for k, v in opt.items():
if isinstance(v, dict):
msg += ' ' * (indent_l * 2) + k + ':[\n'
msg += dict2str(v, indent_l + 1)
msg += ' ' * (indent_l * 2) + ']\n'
else:
msg += ' ' * (indent_l * 2) + k + ': ' + str(v) + '\n'
return msg
class NoneDict(dict):
def __missing__(self, key):
return None
# convert to NoneDict, which return None for missing key.
def dict_to_nonedict(opt):
if isinstance(opt, dict):
new_opt = dict()
for key, sub_opt in opt.items():
new_opt[key] = dict_to_nonedict(sub_opt)
return NoneDict(**new_opt)
elif isinstance(opt, list):
return [dict_to_nonedict(sub_opt) for sub_opt in opt]
else:
return opt
def check_resume(opt, resume_iter):
'''Check resume states and pretrain_model paths'''
logger = logging.getLogger('base')
if opt['path']['resume_state']:
if opt['path'].get('pretrain_model_G', None) is not None or opt['path'].get(
'pretrain_model_D', None) is not None:
logger.warning('pretrain_model path will be ignored when resuming training.')
opt['path']['pretrain_model_G'] = osp.join(opt['path']['models'],
'{}_G.pth'.format(resume_iter))
logger.info('Set [pretrain_model_G] to ' + opt['path']['pretrain_model_G'])
if 'gan' in opt['model']:
opt['path']['pretrain_model_D'] = osp.join(opt['path']['models'],
'{}_D.pth'.format(resume_iter))
logger.info('Set [pretrain_model_D] to ' + opt['path']['pretrain_model_D'])