917 lines
32 KiB
Python
917 lines
32 KiB
Python
from abc import abstractmethod
|
|
|
|
import math
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch as th
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import torchvision # For debugging, not actually used.
|
|
|
|
from models.diffusion.fp16_util import convert_module_to_f16, convert_module_to_f32
|
|
from models.diffusion.nn import (
|
|
conv_nd,
|
|
linear,
|
|
avg_pool_nd,
|
|
zero_module,
|
|
normalization,
|
|
timestep_embedding,
|
|
)
|
|
from trainer.networks import register_model
|
|
from utils.util import checkpoint
|
|
|
|
|
|
class AttentionPool2d(nn.Module):
|
|
"""
|
|
Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
spacial_dim: int,
|
|
embed_dim: int,
|
|
num_heads_channels: int,
|
|
output_dim: int = None,
|
|
):
|
|
super().__init__()
|
|
self.positional_embedding = nn.Parameter(
|
|
th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5
|
|
)
|
|
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
|
|
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
|
|
self.num_heads = embed_dim // num_heads_channels
|
|
self.attention = QKVAttention(self.num_heads)
|
|
|
|
def forward(self, x):
|
|
b, c, *_spatial = x.shape
|
|
x = x.reshape(b, c, -1) # NC(HW)
|
|
x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
|
|
x = x + self.positional_embedding[None, :, :x.shape[-1]].to(x.dtype) # NC(HW+1)
|
|
x = self.qkv_proj(x)
|
|
x = self.attention(x)
|
|
x = self.c_proj(x)
|
|
return x[:, :, 0]
|
|
|
|
|
|
class TimestepBlock(nn.Module):
|
|
"""
|
|
Any module where forward() takes timestep embeddings as a second argument.
|
|
"""
|
|
|
|
@abstractmethod
|
|
def forward(self, x, emb):
|
|
"""
|
|
Apply the module to `x` given `emb` timestep embeddings.
|
|
"""
|
|
|
|
|
|
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
|
"""
|
|
A sequential module that passes timestep embeddings to the children that
|
|
support it as an extra input.
|
|
"""
|
|
|
|
def forward(self, x, emb):
|
|
for layer in self:
|
|
if isinstance(layer, TimestepBlock):
|
|
x = layer(x, emb)
|
|
else:
|
|
x = layer(x)
|
|
return x
|
|
|
|
|
|
class Upsample(nn.Module):
|
|
"""
|
|
An upsampling layer with an optional convolution.
|
|
|
|
:param channels: channels in the inputs and outputs.
|
|
:param use_conv: a bool determining if a convolution is applied.
|
|
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
|
upsampling occurs in the inner-two dimensions.
|
|
"""
|
|
|
|
def __init__(self, channels, use_conv, dims=2, out_channels=None, factor=None):
|
|
super().__init__()
|
|
self.channels = channels
|
|
self.out_channels = out_channels or channels
|
|
self.use_conv = use_conv
|
|
self.dims = dims
|
|
if factor is None:
|
|
if dims == 1:
|
|
self.factor = 4
|
|
else:
|
|
self.factor = 2
|
|
else:
|
|
self.factor = factor
|
|
if use_conv:
|
|
ksize = 3
|
|
pad = 1
|
|
if dims == 1:
|
|
ksize = 5
|
|
pad = 2
|
|
self.conv = conv_nd(dims, self.channels, self.out_channels, ksize, padding=pad)
|
|
|
|
def forward(self, x):
|
|
assert x.shape[1] == self.channels
|
|
if self.dims == 3:
|
|
x = F.interpolate(
|
|
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
|
|
)
|
|
x = F.interpolate(x, scale_factor=self.factor, mode="nearest")
|
|
if self.use_conv:
|
|
x = self.conv(x)
|
|
return x
|
|
|
|
|
|
class Downsample(nn.Module):
|
|
"""
|
|
A downsampling layer with an optional convolution.
|
|
|
|
:param channels: channels in the inputs and outputs.
|
|
:param use_conv: a bool determining if a convolution is applied.
|
|
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
|
downsampling occurs in the inner-two dimensions.
|
|
"""
|
|
|
|
def __init__(self, channels, use_conv, dims=2, out_channels=None, factor=None):
|
|
super().__init__()
|
|
self.channels = channels
|
|
self.out_channels = out_channels or channels
|
|
self.use_conv = use_conv
|
|
self.dims = dims
|
|
ksize = 3
|
|
pad = 1
|
|
if dims == 1:
|
|
stride = 4
|
|
ksize = 5
|
|
pad = 2
|
|
elif dims == 2:
|
|
stride = 2
|
|
else:
|
|
stride = (1,2,2)
|
|
if factor is not None:
|
|
stride = factor
|
|
if use_conv:
|
|
self.op = conv_nd(
|
|
dims, self.channels, self.out_channels, ksize, stride=stride, padding=pad
|
|
)
|
|
else:
|
|
assert self.channels == self.out_channels
|
|
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
|
|
|
def forward(self, x):
|
|
assert x.shape[1] == self.channels
|
|
return self.op(x)
|
|
|
|
|
|
class ResBlock(TimestepBlock):
|
|
"""
|
|
A residual block that can optionally change the number of channels.
|
|
|
|
:param channels: the number of input channels.
|
|
:param emb_channels: the number of timestep embedding channels.
|
|
:param dropout: the rate of dropout.
|
|
:param out_channels: if specified, the number of out channels.
|
|
:param use_conv: if True and out_channels is specified, use a spatial
|
|
convolution instead of a smaller 1x1 convolution to change the
|
|
channels in the skip connection.
|
|
:param dims: determines if the signal is 1D, 2D, or 3D.
|
|
:param up: if True, use this block for upsampling.
|
|
:param down: if True, use this block for downsampling.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
channels,
|
|
emb_channels,
|
|
dropout,
|
|
out_channels=None,
|
|
use_conv=False,
|
|
use_scale_shift_norm=False,
|
|
dims=2,
|
|
up=False,
|
|
down=False,
|
|
kernel_size=3,
|
|
):
|
|
super().__init__()
|
|
self.channels = channels
|
|
self.emb_channels = emb_channels
|
|
self.dropout = dropout
|
|
self.out_channels = out_channels or channels
|
|
self.use_conv = use_conv
|
|
self.use_scale_shift_norm = use_scale_shift_norm
|
|
padding = 1 if kernel_size == 3 else 2
|
|
|
|
self.in_layers = nn.Sequential(
|
|
normalization(channels),
|
|
nn.SiLU(),
|
|
conv_nd(dims, channels, self.out_channels, kernel_size, padding=padding),
|
|
)
|
|
|
|
self.updown = up or down
|
|
|
|
if up:
|
|
self.h_upd = Upsample(channels, False, dims)
|
|
self.x_upd = Upsample(channels, False, dims)
|
|
elif down:
|
|
self.h_upd = Downsample(channels, False, dims)
|
|
self.x_upd = Downsample(channels, False, dims)
|
|
else:
|
|
self.h_upd = self.x_upd = nn.Identity()
|
|
|
|
self.emb_layers = nn.Sequential(
|
|
nn.SiLU(),
|
|
linear(
|
|
emb_channels,
|
|
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
|
|
),
|
|
)
|
|
self.out_layers = nn.Sequential(
|
|
normalization(self.out_channels),
|
|
nn.SiLU(),
|
|
nn.Dropout(p=dropout),
|
|
zero_module(
|
|
conv_nd(dims, self.out_channels, self.out_channels, kernel_size, padding=padding)
|
|
),
|
|
)
|
|
|
|
if self.out_channels == channels:
|
|
self.skip_connection = nn.Identity()
|
|
elif use_conv:
|
|
self.skip_connection = conv_nd(
|
|
dims, channels, self.out_channels, kernel_size, padding=padding
|
|
)
|
|
else:
|
|
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
|
|
|
def forward(self, x, emb):
|
|
"""
|
|
Apply the block to a Tensor, conditioned on a timestep embedding.
|
|
|
|
:param x: an [N x C x ...] Tensor of features.
|
|
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
|
:return: an [N x C x ...] Tensor of outputs.
|
|
"""
|
|
return checkpoint(
|
|
self._forward, x, emb
|
|
)
|
|
|
|
def _forward(self, x, emb):
|
|
if self.updown:
|
|
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
|
h = in_rest(x)
|
|
h = self.h_upd(h)
|
|
x = self.x_upd(x)
|
|
h = in_conv(h)
|
|
else:
|
|
h = self.in_layers(x)
|
|
emb_out = self.emb_layers(emb).type(h.dtype)
|
|
while len(emb_out.shape) < len(h.shape):
|
|
emb_out = emb_out[..., None]
|
|
if self.use_scale_shift_norm:
|
|
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
|
scale, shift = th.chunk(emb_out, 2, dim=1)
|
|
h = out_norm(h) * (1 + scale) + shift
|
|
h = out_rest(h)
|
|
else:
|
|
h = h + emb_out
|
|
h = self.out_layers(h)
|
|
return self.skip_connection(x) + h
|
|
|
|
|
|
class AttentionBlock(nn.Module):
|
|
"""
|
|
An attention block that allows spatial positions to attend to each other.
|
|
|
|
Originally ported from here, but adapted to the N-d case.
|
|
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
channels,
|
|
num_heads=1,
|
|
num_head_channels=-1,
|
|
use_new_attention_order=False,
|
|
do_checkpoint=True,
|
|
):
|
|
super().__init__()
|
|
self.channels = channels
|
|
self.do_checkpoint = do_checkpoint
|
|
if num_head_channels == -1:
|
|
self.num_heads = num_heads
|
|
else:
|
|
assert (
|
|
channels % num_head_channels == 0
|
|
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
|
|
self.num_heads = channels // num_head_channels
|
|
self.norm = normalization(channels)
|
|
self.qkv = conv_nd(1, channels, channels * 3, 1)
|
|
if use_new_attention_order:
|
|
# split qkv before split heads
|
|
self.attention = QKVAttention(self.num_heads)
|
|
else:
|
|
# split heads before split qkv
|
|
self.attention = QKVAttentionLegacy(self.num_heads)
|
|
|
|
self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
|
|
|
|
def forward(self, x, mask=None):
|
|
if self.do_checkpoint:
|
|
return checkpoint(self._forward, x, mask)
|
|
else:
|
|
return self._forward(x, mask)
|
|
|
|
def _forward(self, x, mask):
|
|
b, c, *spatial = x.shape
|
|
x = x.reshape(b, c, -1)
|
|
qkv = self.qkv(self.norm(x))
|
|
h = self.attention(qkv, mask)
|
|
h = self.proj_out(h)
|
|
return (x + h).reshape(b, c, *spatial)
|
|
|
|
|
|
def count_flops_attn(model, _x, y):
|
|
"""
|
|
A counter for the `thop` package to count the operations in an
|
|
attention operation.
|
|
Meant to be used like:
|
|
macs, params = thop.profile(
|
|
model,
|
|
inputs=(inputs, timestamps),
|
|
custom_ops={QKVAttention: QKVAttention.count_flops},
|
|
)
|
|
"""
|
|
b, c, *spatial = y[0].shape
|
|
num_spatial = int(np.prod(spatial))
|
|
# We perform two matmuls with the same number of ops.
|
|
# The first computes the weight matrix, the second computes
|
|
# the combination of the value vectors.
|
|
matmul_ops = 2 * b * (num_spatial ** 2) * c
|
|
model.total_ops += th.DoubleTensor([matmul_ops])
|
|
|
|
|
|
class QKVAttentionLegacy(nn.Module):
|
|
"""
|
|
A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
|
|
"""
|
|
|
|
def __init__(self, n_heads):
|
|
super().__init__()
|
|
self.n_heads = n_heads
|
|
|
|
def forward(self, qkv, mask=None):
|
|
"""
|
|
Apply QKV attention.
|
|
|
|
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
|
|
:return: an [N x (H * C) x T] tensor after attention.
|
|
"""
|
|
bs, width, length = qkv.shape
|
|
assert width % (3 * self.n_heads) == 0
|
|
ch = width // (3 * self.n_heads)
|
|
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
|
|
scale = 1 / math.sqrt(math.sqrt(ch))
|
|
weight = th.einsum(
|
|
"bct,bcs->bts", q * scale, k * scale
|
|
) # More stable with f16 than dividing afterwards
|
|
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
|
if mask is not None:
|
|
# The proper way to do this is to mask before the softmax using -inf, but that doesn't work properly on CPUs.
|
|
mask = mask.repeat(self.n_heads, 1).unsqueeze(1)
|
|
weight = weight * mask
|
|
a = th.einsum("bts,bcs->bct", weight, v)
|
|
|
|
return a.reshape(bs, -1, length)
|
|
|
|
@staticmethod
|
|
def count_flops(model, _x, y):
|
|
return count_flops_attn(model, _x, y)
|
|
|
|
|
|
class QKVAttention(nn.Module):
|
|
"""
|
|
A module which performs QKV attention and splits in a different order.
|
|
"""
|
|
|
|
def __init__(self, n_heads):
|
|
super().__init__()
|
|
self.n_heads = n_heads
|
|
|
|
def forward(self, qkv, mask=None):
|
|
"""
|
|
Apply QKV attention.
|
|
|
|
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
|
|
:return: an [N x (H * C) x T] tensor after attention.
|
|
"""
|
|
bs, width, length = qkv.shape
|
|
assert width % (3 * self.n_heads) == 0
|
|
ch = width // (3 * self.n_heads)
|
|
q, k, v = qkv.chunk(3, dim=1)
|
|
scale = 1 / math.sqrt(math.sqrt(ch))
|
|
weight = th.einsum(
|
|
"bct,bcs->bts",
|
|
(q * scale).view(bs * self.n_heads, ch, length),
|
|
(k * scale).view(bs * self.n_heads, ch, length),
|
|
) # More stable with f16 than dividing afterwards
|
|
if mask is not None:
|
|
# The proper way to do this is to mask before the softmax using -inf, but that doesn't work properly on CPUs.
|
|
mask = mask.repeat(self.n_heads, 1).unsqueeze(1)
|
|
weight = weight * mask
|
|
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
|
a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
|
|
return a.reshape(bs, -1, length)
|
|
|
|
@staticmethod
|
|
def count_flops(model, _x, y):
|
|
return count_flops_attn(model, _x, y)
|
|
|
|
|
|
class UNetModel(nn.Module):
|
|
"""
|
|
The full UNet model with attention and timestep embedding.
|
|
|
|
:param in_channels: channels in the input Tensor.
|
|
:param model_channels: base channel count for the model.
|
|
:param out_channels: channels in the output Tensor.
|
|
:param num_res_blocks: number of residual blocks per downsample.
|
|
:param attention_resolutions: a collection of downsample rates at which
|
|
attention will take place. May be a set, list, or tuple.
|
|
For example, if this contains 4, then at 4x downsampling, attention
|
|
will be used.
|
|
:param dropout: the dropout probability.
|
|
:param channel_mult: channel multiplier for each level of the UNet.
|
|
:param conv_resample: if True, use learned convolutions for upsampling and
|
|
downsampling.
|
|
:param dims: determines if the signal is 1D, 2D, or 3D.
|
|
:param num_classes: if specified (as an int), then this model will be
|
|
class-conditional with `num_classes` classes.
|
|
:param num_heads: the number of attention heads in each attention layer.
|
|
:param num_heads_channels: if specified, ignore num_heads and instead use
|
|
a fixed channel width per attention head.
|
|
:param num_heads_upsample: works with num_heads to set a different number
|
|
of heads for upsampling. Deprecated.
|
|
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
|
:param resblock_updown: use residual blocks for up/downsampling.
|
|
:param use_new_attention_order: use a different attention pattern for potentially
|
|
increased efficiency.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
image_size,
|
|
in_channels,
|
|
model_channels,
|
|
out_channels,
|
|
num_res_blocks,
|
|
attention_resolutions,
|
|
dropout=0,
|
|
channel_mult=(1, 2, 4, 8),
|
|
conv_resample=True,
|
|
dims=2,
|
|
num_classes=None,
|
|
use_fp16=False,
|
|
num_heads=1,
|
|
num_head_channels=-1,
|
|
num_heads_upsample=-1,
|
|
use_scale_shift_norm=False,
|
|
resblock_updown=False,
|
|
use_new_attention_order=False,
|
|
use_raw_y_as_embedding=False,
|
|
):
|
|
super().__init__()
|
|
|
|
if num_heads_upsample == -1:
|
|
num_heads_upsample = num_heads
|
|
|
|
self.image_size = image_size
|
|
self.in_channels = in_channels
|
|
self.model_channels = model_channels
|
|
self.out_channels = out_channels
|
|
self.num_res_blocks = num_res_blocks
|
|
self.attention_resolutions = attention_resolutions
|
|
self.dropout = dropout
|
|
self.channel_mult = channel_mult
|
|
self.conv_resample = conv_resample
|
|
self.num_classes = num_classes
|
|
self.dtype = th.float16 if use_fp16 else th.float32
|
|
self.num_heads = num_heads
|
|
self.num_head_channels = num_head_channels
|
|
self.num_heads_upsample = num_heads_upsample
|
|
|
|
time_embed_dim = model_channels * 4
|
|
self.time_embed = nn.Sequential(
|
|
linear(model_channels, time_embed_dim),
|
|
nn.SiLU(),
|
|
linear(time_embed_dim, time_embed_dim),
|
|
)
|
|
|
|
if self.num_classes is not None:
|
|
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
|
self.use_raw_y_as_embedding = use_raw_y_as_embedding
|
|
assert not ((self.num_classes is not None) and use_raw_y_as_embedding) # These are mutually-exclusive.
|
|
|
|
self.input_blocks = nn.ModuleList(
|
|
[
|
|
TimestepEmbedSequential(
|
|
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
|
)
|
|
]
|
|
)
|
|
self._feature_size = model_channels
|
|
input_block_chans = [model_channels]
|
|
ch = model_channels
|
|
ds = 1
|
|
for level, mult in enumerate(channel_mult):
|
|
for _ in range(num_res_blocks):
|
|
layers = [
|
|
ResBlock(
|
|
ch,
|
|
time_embed_dim,
|
|
dropout,
|
|
out_channels=mult * model_channels,
|
|
dims=dims,
|
|
use_scale_shift_norm=use_scale_shift_norm,
|
|
)
|
|
]
|
|
ch = mult * model_channels
|
|
if ds in attention_resolutions:
|
|
layers.append(
|
|
AttentionBlock(
|
|
ch,
|
|
num_heads=num_heads,
|
|
num_head_channels=num_head_channels,
|
|
use_new_attention_order=use_new_attention_order,
|
|
)
|
|
)
|
|
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
|
self._feature_size += ch
|
|
input_block_chans.append(ch)
|
|
if level != len(channel_mult) - 1:
|
|
out_ch = ch
|
|
self.input_blocks.append(
|
|
TimestepEmbedSequential(
|
|
ResBlock(
|
|
ch,
|
|
time_embed_dim,
|
|
dropout,
|
|
out_channels=out_ch,
|
|
dims=dims,
|
|
use_scale_shift_norm=use_scale_shift_norm,
|
|
down=True,
|
|
)
|
|
if resblock_updown
|
|
else Downsample(
|
|
ch, conv_resample, dims=dims, out_channels=out_ch
|
|
)
|
|
)
|
|
)
|
|
ch = out_ch
|
|
input_block_chans.append(ch)
|
|
ds *= 2
|
|
self._feature_size += ch
|
|
|
|
self.middle_block = TimestepEmbedSequential(
|
|
ResBlock(
|
|
ch,
|
|
time_embed_dim,
|
|
dropout,
|
|
dims=dims,
|
|
use_scale_shift_norm=use_scale_shift_norm,
|
|
),
|
|
AttentionBlock(
|
|
ch,
|
|
num_heads=num_heads,
|
|
num_head_channels=num_head_channels,
|
|
use_new_attention_order=use_new_attention_order,
|
|
),
|
|
ResBlock(
|
|
ch,
|
|
time_embed_dim,
|
|
dropout,
|
|
dims=dims,
|
|
use_scale_shift_norm=use_scale_shift_norm,
|
|
),
|
|
)
|
|
self._feature_size += ch
|
|
|
|
self.output_blocks = nn.ModuleList([])
|
|
for level, mult in list(enumerate(channel_mult))[::-1]:
|
|
for i in range(num_res_blocks + 1):
|
|
ich = input_block_chans.pop()
|
|
layers = [
|
|
ResBlock(
|
|
ch + ich,
|
|
time_embed_dim,
|
|
dropout,
|
|
out_channels=model_channels * mult,
|
|
dims=dims,
|
|
use_scale_shift_norm=use_scale_shift_norm,
|
|
)
|
|
]
|
|
ch = model_channels * mult
|
|
if ds in attention_resolutions:
|
|
layers.append(
|
|
AttentionBlock(
|
|
ch,
|
|
num_heads=num_heads_upsample,
|
|
num_head_channels=num_head_channels,
|
|
use_new_attention_order=use_new_attention_order,
|
|
)
|
|
)
|
|
if level and i == num_res_blocks:
|
|
out_ch = ch
|
|
layers.append(
|
|
ResBlock(
|
|
ch,
|
|
time_embed_dim,
|
|
dropout,
|
|
out_channels=out_ch,
|
|
dims=dims,
|
|
use_scale_shift_norm=use_scale_shift_norm,
|
|
up=True,
|
|
)
|
|
if resblock_updown
|
|
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
|
)
|
|
ds //= 2
|
|
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
|
self._feature_size += ch
|
|
|
|
self.out = nn.Sequential(
|
|
normalization(ch),
|
|
nn.SiLU(),
|
|
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
|
|
)
|
|
|
|
def forward(self, x, timesteps, y=None):
|
|
"""
|
|
Apply the model to an input batch.
|
|
|
|
:param x: an [N x C x ...] Tensor of inputs.
|
|
:param timesteps: a 1-D batch of timesteps.
|
|
:param y: an [N] Tensor of labels, if class-conditional.
|
|
:return: an [N x C x ...] Tensor of outputs.
|
|
"""
|
|
hs = []
|
|
emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
|
|
|
|
if self.num_classes is not None:
|
|
assert y.shape == (x.shape[0],)
|
|
emb = emb + self.label_emb(y)
|
|
if self.use_raw_y_as_embedding:
|
|
emb = emb + y
|
|
|
|
h = x.type(self.dtype)
|
|
for module in self.input_blocks:
|
|
h = module(h, emb)
|
|
hs.append(h)
|
|
h = self.middle_block(h, emb)
|
|
for module in self.output_blocks:
|
|
h = th.cat([h, hs.pop()], dim=1)
|
|
h = module(h, emb)
|
|
h = h.type(x.dtype)
|
|
return self.out(h)
|
|
|
|
|
|
class SuperResModel(UNetModel):
|
|
"""
|
|
A UNetModel that performs super-resolution.
|
|
|
|
Expects an extra kwarg `low_res` to condition on a low-resolution image.
|
|
"""
|
|
|
|
def __init__(self, image_size, in_channels, num_corruptions=0, *args, **kwargs):
|
|
self.num_corruptions = num_corruptions
|
|
super().__init__(image_size, in_channels * 2 + num_corruptions, *args, **kwargs)
|
|
|
|
def forward(self, x, timesteps, low_res=None, corruption_factor=None, **kwargs):
|
|
b, _, new_height, new_width = x.shape
|
|
upsampled = F.interpolate(low_res, (new_height, new_width), mode="bilinear")
|
|
if corruption_factor is not None:
|
|
if corruption_factor.shape[1] != self.num_corruptions:
|
|
if not hasattr(self, '_corruption_factor_warning'):
|
|
print(f"Warning! Dataloader gave us {corruption_factor.shape[1]} dim but we are only processing {self.num_corruptions}. The last n corruptions will be truncated.")
|
|
self._corruption_factor_warning = True
|
|
corruption_factor = corruption_factor[:, :self.num_corruptions]
|
|
corruption_factor = corruption_factor.view(b, -1, 1, 1).repeat(1, 1, new_height, new_width)
|
|
else:
|
|
corruption_factor = torch.zeros((b, self.num_corruptions, new_height, new_width), dtype=torch.float, device=x.device)
|
|
upsampled = torch.cat([upsampled, corruption_factor], dim=1)
|
|
x = th.cat([x, upsampled], dim=1)
|
|
res = super().forward(x, timesteps, **kwargs)
|
|
return res
|
|
|
|
|
|
class EncoderUNetModel(nn.Module):
|
|
"""
|
|
The half UNet model with attention and timestep embedding.
|
|
|
|
For usage, see UNet.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
image_size,
|
|
in_channels,
|
|
model_channels,
|
|
out_channels,
|
|
num_res_blocks,
|
|
attention_resolutions,
|
|
dropout=0,
|
|
channel_mult=(1, 2, 4, 8),
|
|
conv_resample=True,
|
|
dims=2,
|
|
use_fp16=False,
|
|
num_heads=1,
|
|
num_head_channels=-1,
|
|
num_heads_upsample=-1,
|
|
use_scale_shift_norm=False,
|
|
resblock_updown=False,
|
|
use_new_attention_order=False,
|
|
pool="adaptive",
|
|
):
|
|
super().__init__()
|
|
|
|
if num_heads_upsample == -1:
|
|
num_heads_upsample = num_heads
|
|
|
|
self.in_channels = in_channels
|
|
self.model_channels = model_channels
|
|
self.out_channels = out_channels
|
|
self.num_res_blocks = num_res_blocks
|
|
self.attention_resolutions = attention_resolutions
|
|
self.dropout = dropout
|
|
self.channel_mult = channel_mult
|
|
self.conv_resample = conv_resample
|
|
self.dtype = th.float16 if use_fp16 else th.float32
|
|
self.num_heads = num_heads
|
|
self.num_head_channels = num_head_channels
|
|
self.num_heads_upsample = num_heads_upsample
|
|
|
|
time_embed_dim = model_channels * 4
|
|
self.time_embed = nn.Sequential(
|
|
linear(model_channels, time_embed_dim),
|
|
nn.SiLU(),
|
|
linear(time_embed_dim, time_embed_dim),
|
|
)
|
|
|
|
self.input_blocks = nn.ModuleList(
|
|
[
|
|
TimestepEmbedSequential(
|
|
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
|
)
|
|
]
|
|
)
|
|
self._feature_size = model_channels
|
|
input_block_chans = [model_channels]
|
|
ch = model_channels
|
|
ds = 1
|
|
for level, mult in enumerate(channel_mult):
|
|
for _ in range(num_res_blocks):
|
|
layers = [
|
|
ResBlock(
|
|
ch,
|
|
time_embed_dim,
|
|
dropout,
|
|
out_channels=mult * model_channels,
|
|
dims=dims,
|
|
use_scale_shift_norm=use_scale_shift_norm,
|
|
)
|
|
]
|
|
ch = mult * model_channels
|
|
if ds in attention_resolutions:
|
|
layers.append(
|
|
AttentionBlock(
|
|
ch,
|
|
num_heads=num_heads,
|
|
num_head_channels=num_head_channels,
|
|
use_new_attention_order=use_new_attention_order,
|
|
)
|
|
)
|
|
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
|
self._feature_size += ch
|
|
input_block_chans.append(ch)
|
|
if level != len(channel_mult) - 1:
|
|
out_ch = ch
|
|
self.input_blocks.append(
|
|
TimestepEmbedSequential(
|
|
ResBlock(
|
|
ch,
|
|
time_embed_dim,
|
|
dropout,
|
|
out_channels=out_ch,
|
|
dims=dims,
|
|
use_scale_shift_norm=use_scale_shift_norm,
|
|
down=True,
|
|
)
|
|
if resblock_updown
|
|
else Downsample(
|
|
ch, conv_resample, dims=dims, out_channels=out_ch
|
|
)
|
|
)
|
|
)
|
|
ch = out_ch
|
|
input_block_chans.append(ch)
|
|
ds *= 2
|
|
self._feature_size += ch
|
|
|
|
self.middle_block = TimestepEmbedSequential(
|
|
ResBlock(
|
|
ch,
|
|
time_embed_dim,
|
|
dropout,
|
|
dims=dims,
|
|
use_scale_shift_norm=use_scale_shift_norm,
|
|
),
|
|
AttentionBlock(
|
|
ch,
|
|
num_heads=num_heads,
|
|
num_head_channels=num_head_channels,
|
|
use_new_attention_order=use_new_attention_order,
|
|
),
|
|
ResBlock(
|
|
ch,
|
|
time_embed_dim,
|
|
dropout,
|
|
dims=dims,
|
|
use_scale_shift_norm=use_scale_shift_norm,
|
|
),
|
|
)
|
|
self._feature_size += ch
|
|
self.pool = pool
|
|
if pool == "adaptive":
|
|
self.out = nn.Sequential(
|
|
normalization(ch),
|
|
nn.SiLU(),
|
|
nn.AdaptiveAvgPool2d((1, 1)),
|
|
zero_module(conv_nd(dims, ch, out_channels, 1)),
|
|
nn.Flatten(),
|
|
)
|
|
elif pool == "attention":
|
|
assert num_head_channels != -1
|
|
self.out = nn.Sequential(
|
|
normalization(ch),
|
|
nn.SiLU(),
|
|
AttentionPool2d(
|
|
(image_size // ds), ch, num_head_channels, out_channels
|
|
),
|
|
)
|
|
elif pool == "spatial":
|
|
self.out = nn.Sequential(
|
|
nn.Linear(self._feature_size, 2048),
|
|
nn.ReLU(),
|
|
nn.Linear(2048, self.out_channels),
|
|
)
|
|
elif pool == "spatial_v2":
|
|
self.out = nn.Sequential(
|
|
nn.Linear(self._feature_size, 2048),
|
|
normalization(2048),
|
|
nn.SiLU(),
|
|
nn.Linear(2048, self.out_channels),
|
|
)
|
|
else:
|
|
raise NotImplementedError(f"Unexpected {pool} pooling")
|
|
|
|
def forward(self, x, timesteps):
|
|
"""
|
|
Apply the model to an input batch.
|
|
|
|
:param x: an [N x C x ...] Tensor of inputs.
|
|
:param timesteps: a 1-D batch of timesteps.
|
|
:return: an [N x K] Tensor of outputs.
|
|
"""
|
|
emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
|
|
|
|
results = []
|
|
h = x.type(self.dtype)
|
|
for module in self.input_blocks:
|
|
h = module(h, emb)
|
|
if self.pool.startswith("spatial"):
|
|
results.append(h.type(x.dtype).mean(dim=(2, 3)))
|
|
h = self.middle_block(h, emb)
|
|
if self.pool.startswith("spatial"):
|
|
results.append(h.type(x.dtype).mean(dim=(2, 3)))
|
|
h = th.cat(results, axis=-1)
|
|
return self.out(h)
|
|
else:
|
|
h = h.type(x.dtype)
|
|
return self.out(h)
|
|
|
|
@register_model
|
|
def register_unet_diffusion(opt_net, opt):
|
|
return SuperResModel(**opt_net['args'])
|
|
|
|
if __name__ == '__main__':
|
|
attention_ds = []
|
|
for res in "16,8".split(","):
|
|
attention_ds.append(128 // int(res))
|
|
srm = SuperResModel(image_size=128, in_channels=3, model_channels=64, out_channels=3, num_res_blocks=1, attention_resolutions=attention_ds, num_heads=4,
|
|
num_heads_upsample=-1, use_scale_shift_norm=True)
|
|
x = torch.randn(1,3,128,128)
|
|
l = torch.randn(1,3,32,32)
|
|
ts = torch.LongTensor([555])
|
|
y = srm(x, ts, low_res=l)
|
|
print(y.shape, y.mean(), y.std(), y.min(), y.max()) |