DL-Art-School/codes/models/switched_conv/switched_conv_hard_routing.py
2021-02-05 08:42:11 -07:00

298 lines
14 KiB
Python

import math
import torch
import torch.nn as nn
import switched_conv_cuda_naive
from lambda_networks import LambdaLayer
from torch.nn import init, Conv2d, MSELoss
import torch.nn.functional as F
from tqdm import tqdm
import torch.distributed as dist
from trainer.losses import ConfigurableLoss
def SwitchedConvRoutingNormal(input, selector, weight, bias, stride=1):
convs = []
b, s, h, w = selector.shape
for sel in range(s):
convs.append(F.conv2d(input, weight[:, :, sel, :, :], bias, stride=stride, padding=weight.shape[-1] // 2))
output = torch.stack(convs, dim=1) * selector.unsqueeze(dim=2)
return output.sum(dim=1)
class SwitchedConvHardRoutingFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, input, selector, weight, bias, stride=1):
# Build hard attention mask from selector input
b, s, h, w = selector.shape
mask = selector.argmax(dim=1).int()
output = switched_conv_cuda_naive.forward(input, mask, weight, bias, stride)
ctx.stride = stride
ctx.breadth = s
ctx.save_for_backward(*[input, output.detach().clone(), mask, weight, bias])
return output
@staticmethod
def backward(ctx, gradIn):
#import pydevd
#pydevd.settrace(suspend=False, trace_only_current_thread=True)
input, output, mask, weight, bias = ctx.saved_tensors
gradIn = gradIn
# Selector grad is simply the element-wise product of grad with the output of the layer, summed across the channel dimension
# and repeated along the breadth of the switch. (Think of the forward operation using the selector as a simple matrix of 1s
# and zeros that is multiplied by the output.)
grad_sel = (gradIn * output).sum(dim=1, keepdim=True).repeat(1,ctx.breadth,1,1)
grad, grad_w, grad_b = switched_conv_cuda_naive.backward(input, gradIn.contiguous(), mask, weight, bias, ctx.stride)
return grad, grad_sel, grad_w, grad_b, None
class RouteTop1(torch.autograd.Function):
@staticmethod
def forward(ctx, input):
mask = torch.nn.functional.one_hot(input.argmax(dim=1), num_classes=input.shape[1]).permute(0,3,1,2)
out = torch.ones_like(input)
out[mask != 1] = 0
ctx.save_for_backward(mask, input.clone())
return out
@staticmethod
def backward(ctx, grad):
# Enable breakpoints in this function: (Comment out if not debugging)
#import pydevd
#pydevd.settrace(suspend=False, trace_only_current_thread=True)
mask, input = ctx.saved_tensors
input[mask != 1] = 1
grad_input = grad.clone()
grad_input[mask != 1] = 0
grad_input_n = grad_input / input # Above, we made everything either a zero or a one. Unscale the ones by dividing by the unmasked inputs.
return grad_input_n
"""
SwitchNorm is meant to be applied against the Softmax output of an switching function across a large set of
switch computations. It is meant to promote an equal distribution of switch weights by decreasing the magnitude
of switch weights that are over-used and increasing the magnitude of under-used weights.
The return value has the exact same format as a normal Softmax output and can be used directly into the input of an
switch equation.
Since the whole point of convolutional switch is to enable training extra-wide networks to operate on a large number
of image categories, it makes almost no sense to perform this type of norm against a single mini-batch of images: some
of the switches will not be used in such a small context - and that's good! This is solved by accumulating. Every
forward pass computes a norm across the current minibatch. That norm is added into a rotating buffer of size
<accumulator_size>. The actual normalization occurs across the entire rotating buffer.
You should set accumulator size according to two factors:
- Your batch size. Smaller batch size should mean greater accumulator size.
- Your image diversity. More diverse images have less need for the accumulator.
- How wide your switch/switching group size is. More groups mean you're going to want more accumulation.
Note: This norm makes the (potentially flawed) assumption that each forward() pass has unique data. For maximum
effectiveness, avoid doing this - or make alterations to work around it.
Note: This norm does nothing for the first <accumulator_size> iterations.
"""
class SwitchNorm(nn.Module):
def __init__(self, group_size, accumulator_size=128):
super().__init__()
self.accumulator_desired_size = accumulator_size
self.group_size = group_size
self.register_buffer("accumulator_index", torch.zeros(1, dtype=torch.long, device='cpu'))
self.register_buffer("accumulator_filled", torch.zeros(1, dtype=torch.long, device='cpu'))
self.register_buffer("accumulator", torch.zeros(accumulator_size, group_size))
def add_norm_to_buffer(self, x):
flat = x.sum(dim=[0, 2, 3])
norm = flat / torch.mean(flat)
self.accumulator[self.accumulator_index] = norm.detach().clone()
self.accumulator_index += 1
if self.accumulator_index >= self.accumulator_desired_size:
self.accumulator_index *= 0
if self.accumulator_filled <= 0:
self.accumulator_filled += 1
# Input into forward is a switching tensor of shape (batch,groups,width,height)
def forward(self, x: torch.Tensor, update_attention_norm=True):
assert len(x.shape) == 4
# Push the accumulator to the right device on the first iteration.
if self.accumulator.device != x.device:
self.accumulator = self.accumulator.to(x.device)
# In eval, don't change the norm buffer.
if self.training and update_attention_norm:
self.add_norm_to_buffer(x)
# Reduce across all distributed entities, if needed
if dist.is_available() and dist.is_initialized():
dist.all_reduce(self.accumulator, op=dist.ReduceOp.SUM)
self.accumulator /= dist.get_world_size()
# Compute the norm factor.
if self.accumulator_filled > 0:
norm = torch.mean(self.accumulator, dim=0)
else:
norm = torch.ones(self.group_size, device=self.accumulator.device)
x = x / norm.view(1,-1,1,1)
# Need to re-normalize x so that the groups dimension sum to 1, just like when it was fed in.
return x / x.sum(dim=1, keepdim=True)
class HardRoutingGate(nn.Module):
def __init__(self, breadth, hard_en=True):
super().__init__()
self.norm = SwitchNorm(breadth, accumulator_size=256)
self.hard_en = hard_en
def forward(self, x):
soft = self.norm(nn.functional.softmax(x, dim=1))
if self.hard_en:
return RouteTop1.apply(soft)
return soft
class SwitchedConvHardRouting(nn.Module):
def __init__(self,
in_c,
out_c,
kernel_sz,
breadth,
stride=1,
bias=True,
dropout_rate=0.0,
include_coupler: bool = False, # A 'coupler' is a latent converter which can make any bxcxhxw tensor a compatible switchedconv selector by performing a linear 1x1 conv, softmax and interpolate.
coupler_mode: str = 'standard',
coupler_dim_in: int = 0,
hard_en=True): # A test switch that, when used in 'emulation mode' (where all convs are calculated using torch functions) computes soft-attention instead of hard-attention.
super().__init__()
self.in_channels = in_c
self.out_channels = out_c
self.kernel_size = kernel_sz
self.stride = stride
self.has_bias = bias
self.breadth = breadth
self.dropout_rate = dropout_rate
if include_coupler:
if coupler_mode == 'standard':
self.coupler = Conv2d(coupler_dim_in, breadth, kernel_size=1, stride=self.stride)
elif coupler_mode == 'lambda':
self.coupler = nn.Sequential(nn.Conv2d(coupler_dim_in, coupler_dim_in, 1),
nn.GroupNorm(num_groups=2, num_channels=coupler_dim_in),
nn.ReLU(),
LambdaLayer(dim=coupler_dim_in, dim_out=breadth, r=23, dim_k=16, heads=2, dim_u=1),
nn.GroupNorm(num_groups=1, num_channels=breadth),
nn.ReLU(),
Conv2d(breadth, breadth, 1, stride=self.stride))
elif coupler_mode == 'lambda2':
self.coupler = nn.Sequential(nn.Conv2d(coupler_dim_in, coupler_dim_in, 1),
nn.GroupNorm(num_groups=2, num_channels=coupler_dim_in),
nn.ReLU(),
LambdaLayer(dim=coupler_dim_in, dim_out=coupler_dim_in, r=23, dim_k=16, heads=2, dim_u=1),
nn.GroupNorm(num_groups=2, num_channels=coupler_dim_in),
nn.ReLU(),
LambdaLayer(dim=coupler_dim_in, dim_out=breadth, r=23, dim_k=16, heads=2, dim_u=1),
nn.GroupNorm(num_groups=1, num_channels=breadth),
nn.ReLU(),
Conv2d(breadth, breadth, 1, stride=self.stride))
else:
self.coupler = None
self.gate = HardRoutingGate(breadth, hard_en=hard_en)
self.weight = nn.Parameter(torch.empty(out_c, in_c, breadth, kernel_sz, kernel_sz))
if bias:
self.bias = nn.Parameter(torch.empty(out_c))
else:
self.bias = torch.zeros(out_c)
self.reset_parameters()
def reset_parameters(self) -> None:
init.kaiming_uniform_(self.weight, a=math.sqrt(5))
if self.bias is not None:
fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight[:,:,0,:,:])
bound = 1 / math.sqrt(fan_in)
init.uniform_(self.bias, -bound, bound)
def load_weights_from_conv(self, cnv):
sd = cnv.state_dict()
sd['weight'] = sd['weight'].unsqueeze(2).repeat(1,1,self.breadth,1,1)
self.load_state_dict(sd)
def forward(self, input, selector=None):
if self.bias.device != input.device:
self.bias = self.bias.to(input.device) # Because this bias can be a tensor that is not moved with the rest of the module.
# If a coupler was specified, run that to convert selector into a softmax distribution.
if self.coupler:
if selector is None: # A coupler can convert from any input to a selector, so 'None' is allowed.
selector = input
selector = self.coupler(selector)
assert selector is not None
# Apply dropout at the batch level per kernel.
if self.training and self.dropout_rate > 0:
b, c, h, w = selector.shape
drop = torch.rand((b, c, 1, 1), device=input.device) > self.dropout_rate
# Ensure that there is always at least one switch left un-dropped out
fix_blank = (drop.sum(dim=1, keepdim=True) == 0).repeat(1, c, 1, 1)
drop = drop.logical_or(fix_blank)
selector = drop * selector
selector = self.gate(selector)
# Debugging variables
self.last_select = selector.detach().clone()
self.latest_masks = (selector.max(dim=1, keepdim=True)[0].repeat(1,self.breadth,1,1) == selector).float().argmax(dim=1)
if False:
# This is a custom CUDA implementation which should be faster and less memory intensive (once completed).
return SwitchedConvHardRoutingFunction.apply(input, selector, self.weight, self.bias, self.stride)
else:
# This composes the switching functionality using raw Torch, which basically consists of computing each of <breadth> convs separately and combining them.
return SwitchedConvRoutingNormal(input, selector, self.weight, self.bias, self.stride)
# Given a state_dict and the module that that sd belongs to, strips out all Conv2d.weight parameters and replaces them
# with the equivalent SwitchedConv.weight parameters. Does not create coupler params.
def convert_conv_net_state_dict_to_switched_conv(module, switch_breadth, ignore_list=[]):
state_dict = module.state_dict()
for name, m in module.named_modules():
if not isinstance(m, nn.Conv2d):
continue
ignored = False
for smod in ignore_list:
if smod in name:
ignored = True
continue
if ignored:
continue
if name == '':
key = 'weight'
else:
key = f'{name}.weight'
state_dict[key] = state_dict[key].unsqueeze(2).repeat(1,1,switch_breadth,1,1)
return state_dict
def test_net():
for j in tqdm(range(100)):
base_conv = Conv2d(32, 64, 3, stride=2, padding=1, bias=True).to('cuda')
mod_conv = SwitchedConvHardRouting(32, 64, 3, breadth=8, stride=2, bias=True, include_coupler=True, coupler_dim_in=32, dropout_rate=.2).to('cuda')
mod_sd = convert_conv_net_state_dict_to_switched_conv(base_conv, 8)
mod_conv.load_state_dict(mod_sd, strict=False)
inp = torch.randn((128,32,128,128), device='cuda')
out1 = base_conv(inp)
out2 = mod_conv(inp, None)
compare = (out2+torch.rand_like(out2)*1e-6).detach()
MSELoss()(out2, compare).backward()
assert(torch.max(torch.abs(out1-out2)) < 1e-5)
if __name__ == '__main__':
test_net()