117 lines
5.4 KiB
Python
117 lines
5.4 KiB
Python
from time import time
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from transformers import GPT2Model, GPT2Config, GPT2LMHeadModel, GPT2PreTrainedModel
|
|
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
|
|
from transformers.utils.model_parallel_utils import get_device_map, assert_device_map
|
|
|
|
from models.gpt_voice.mini_encoder import AudioMiniEncoder
|
|
from models.tacotron2.text import symbols
|
|
from trainer.networks import register_model
|
|
from utils.util import opt_get
|
|
|
|
|
|
class GptTtsHf(nn.Module):
|
|
NUMBER_TEXT_TOKENS = len(symbols)+1
|
|
START_TEXT_TOKEN = len(symbols)
|
|
STOP_TEXT_TOKEN = 0
|
|
NUMBER_MEL_CODES = 8194
|
|
START_MEL_TOKEN = 8192
|
|
STOP_MEL_TOKEN = 8193
|
|
|
|
def __init__(self, layers=8, model_dim=512, heads=8, max_symbols_per_phrase=200, max_mel_tokens=250, max_conditioning_inputs=3, checkpointing=True):
|
|
super().__init__()
|
|
self.max_mel_tokens = max_mel_tokens
|
|
self.max_symbols_per_phrase = max_symbols_per_phrase
|
|
|
|
self.model_dim = model_dim
|
|
self.max_mel_tokens = max_mel_tokens
|
|
self.max_conditioning_inputs = max_conditioning_inputs
|
|
self.conditioning_encoder = AudioMiniEncoder(80, model_dim)
|
|
self.text_pos_embedding = nn.Embedding(self.max_symbols_per_phrase + 1, model_dim)
|
|
self.conditioning_embedding = nn.Embedding(self.max_conditioning_inputs, model_dim)
|
|
self.mel_pos_embedding = nn.Embedding(self.max_mel_tokens + 2, model_dim)
|
|
seq_length = 2+self.max_symbols_per_phrase+self.max_conditioning_inputs+self.max_mel_tokens
|
|
self.gpt_config = GPT2Config(vocab_size=self.NUMBER_MEL_CODES,
|
|
n_positions=seq_length,
|
|
n_ctx=seq_length,
|
|
n_embd=model_dim,
|
|
n_layer=layers,
|
|
n_head=heads,
|
|
gradient_checkpointing=checkpointing,
|
|
use_cache=not checkpointing)
|
|
self.gpt = GPT2Model(self.gpt_config)
|
|
self.final_norm = nn.LayerNorm(model_dim)
|
|
self.text_head = nn.Linear(model_dim, self.NUMBER_TEXT_TOKENS)
|
|
self.mel_head = nn.Linear(model_dim, self.NUMBER_MEL_CODES)
|
|
|
|
|
|
def get_logits(self, text_inputs, cond_inputs, mel_targets, get_attns=False):
|
|
assert text_inputs.shape[1] <= self.max_symbols_per_phrase
|
|
assert cond_inputs.shape[1] <= self.max_conditioning_inputs
|
|
assert mel_targets.shape[1] <= self.max_mel_tokens
|
|
|
|
mel_targets = F.pad(mel_targets, (1,0), value=self.START_MEL_TOKEN)
|
|
mel_targets = F.pad(mel_targets, (0, self.max_mel_tokens - mel_targets.shape[1]), value=self.STOP_MEL_TOKEN)
|
|
mel_emb = self.gpt.get_input_embeddings()(mel_targets)
|
|
mel_emb = mel_emb + self.mel_pos_embedding(torch.arange(mel_emb.shape[1], device=mel_targets.device))
|
|
|
|
text_targets = F.pad(text_inputs, (1,0), value=self.START_TEXT_TOKEN)
|
|
text_targets = F.pad(text_inputs, (0, self.max_symbols_per_phrase - text_targets.shape[1]), value=self.STOP_TEXT_TOKEN)
|
|
text_emb = self.gpt.get_input_embeddings()(text_targets)
|
|
text_emb = text_emb + self.text_pos_embedding(torch.arange(text_emb.shape[1], device=text_targets.device))
|
|
|
|
conds = []
|
|
for k in range(cond_inputs.shape[1]):
|
|
conds.append(self.conditioning_encoder(cond_inputs[:, k]))
|
|
while len(conds) < self.max_conditioning_inputs:
|
|
conds.append(conds[-1])
|
|
conds = torch.stack(conds, dim=1)
|
|
conds = conds + self.conditioning_embedding(torch.arange(conds.shape[1], device=conds.device))
|
|
|
|
emb = torch.cat([mel_emb, conds, text_emb], dim=1)
|
|
gpt_out = self.gpt(inputs_embeds=emb, return_dict=True, output_attentions=get_attns)
|
|
if get_attns:
|
|
return gpt_out.attentions
|
|
enc = gpt_out.last_hidden_state
|
|
|
|
text_logits = self.final_norm(enc[:, :self.max_symbols_per_phrase])
|
|
text_logits = self.text_head(text_logits)
|
|
text_logits = text_logits.permute(0,2,1)
|
|
mel_logits = self.final_norm(enc[:, -self.max_mel_tokens:])
|
|
mel_logits = self.mel_head(mel_logits)
|
|
mel_logits = mel_logits.permute(0,2,1)
|
|
|
|
return text_logits, mel_logits
|
|
|
|
def forward(self, text_inputs, cond_inputs, mel_targets, return_attentions=False):
|
|
"""
|
|
Forward pass
|
|
text_inputs: long tensor, (b,t)
|
|
cond_inputs: MEL float tensor, (b,c,80,s)
|
|
mel_targets: long tensor, (b,m)
|
|
"""
|
|
text_logits, mel_logits = self.get_logits(text_inputs, cond_inputs, mel_targets, get_attns=return_attentions)
|
|
if return_attentions:
|
|
return mel_logits
|
|
|
|
text_targets = F.pad(text_inputs, (0,self.max_symbols_per_phrase-text_inputs.shape[1]), value=self.STOP_TEXT_TOKEN)
|
|
loss_text = F.cross_entropy(text_logits, text_targets.long())
|
|
mel_targets = F.pad(mel_targets, (0,self.max_mel_tokens-mel_targets.shape[1]), value=self.STOP_MEL_TOKEN)
|
|
loss_mel = F.cross_entropy(mel_logits, mel_targets.long())
|
|
return loss_text.mean(), loss_mel.mean(), mel_logits
|
|
|
|
|
|
@register_model
|
|
def register_gpt_tts_hf(opt_net, opt):
|
|
return GptTtsHf(**opt_get(opt_net, ['kwargs'], {}))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
gpt = GptTtsHf()
|
|
l = gpt(torch.randint(high=len(symbols), size=(2,100)),
|
|
torch.randn(2,2,80,800),
|
|
torch.randint(high=8192, size=(2,200)))
|