58 lines
2.1 KiB
Python
58 lines
2.1 KiB
Python
# Base class for an evaluator, which is responsible for feeding test data through a model and evaluating the response.
|
|
import importlib
|
|
import inspect
|
|
import pkgutil
|
|
import re
|
|
import sys
|
|
|
|
|
|
class Evaluator:
|
|
def __init__(self, model, opt_eval, env, uses_all_ddp=True):
|
|
self.model = model.module if hasattr(model, 'module') else model
|
|
self.opt = opt_eval
|
|
self.env = env
|
|
self.uses_all_ddp = uses_all_ddp
|
|
|
|
def perform_eval(self):
|
|
return {}
|
|
|
|
|
|
def format_evaluator_name(name):
|
|
# Formats by converting from CamelCase to snake_case and removing trailing "_evaluator"
|
|
name = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name)
|
|
name = re.sub('([a-z0-9])([A-Z])', r'\1_\2', name).lower()
|
|
return name.replace("_evaluator", "")
|
|
|
|
|
|
# Works by loading all python modules in the eval/ directory and sniffing out subclasses of Evaluator.
|
|
def find_registered_evaluators(base_path="trainer/eval"):
|
|
module_iter = pkgutil.walk_packages([base_path])
|
|
results = {}
|
|
for mod in module_iter:
|
|
if mod.ispkg:
|
|
EXCLUSION_LIST = []
|
|
if mod.name not in EXCLUSION_LIST:
|
|
results.update(find_registered_evaluators(f'{base_path}/{mod.name}'))
|
|
else:
|
|
mod_name = f'{base_path}/{mod.name}'.replace('/', '.')
|
|
importlib.import_module(mod_name)
|
|
classes = inspect.getmembers(sys.modules[mod_name], inspect.isclass)
|
|
for name, obj in classes:
|
|
if 'Evaluator' in [mro.__name__ for mro in inspect.getmro(obj)]:
|
|
results[format_evaluator_name(name)] = obj
|
|
return results
|
|
|
|
|
|
class CreateEvaluatorError(Exception):
|
|
def __init__(self, name, available):
|
|
super().__init__(f'Could not find the specified evaluator name: {name}. Available evaluators:'
|
|
f'{available}')
|
|
|
|
|
|
def create_evaluator(model, opt_eval, env):
|
|
evaluators = find_registered_evaluators()
|
|
type = opt_eval['type']
|
|
if type not in evaluators.keys():
|
|
raise CreateEvaluatorError(type, list(evaluators.keys()))
|
|
return evaluators[opt_eval['type']](model, opt_eval, env)
|