DL-Art-School/codes/models/archs/srflow/FlowUpsamplerNet.py
2020-11-06 20:38:04 -07:00

294 lines
12 KiB
Python

import numpy as np
import torch
from torch import nn as nn
import models.archs.srflow.Split
from models.archs.srflow import flow, thops
from models.archs.srflow.Split import Split2d
from models.archs.srflow.glow_arch import f_conv2d_bias
from models.archs.srflow.FlowStep import FlowStep
from utils.util import opt_get
class FlowUpsamplerNet(nn.Module):
def __init__(self, image_shape, hidden_channels, K, L=None,
actnorm_scale=1.0,
flow_permutation=None,
flow_coupling="affine",
LU_decomposed=False, opt=None):
super().__init__()
self.layers = nn.ModuleList()
self.output_shapes = []
self.L = opt_get(opt, ['network_G', 'flow', 'L'])
self.K = opt_get(opt, ['network_G', 'flow', 'K'])
if isinstance(self.K, int):
self.K = [K for K in [K, ] * (self.L + 1)]
self.opt = opt
H, W, self.C = image_shape
self.check_image_shape()
if opt['scale'] == 16:
self.levelToName = {
0: 'fea_up16',
1: 'fea_up8',
2: 'fea_up4',
3: 'fea_up2',
4: 'fea_up1',
}
if opt['scale'] == 8:
self.levelToName = {
0: 'fea_up8',
1: 'fea_up4',
2: 'fea_up2',
3: 'fea_up1',
4: 'fea_up0'
}
elif opt['scale'] == 4:
self.levelToName = {
0: 'fea_up4',
1: 'fea_up2',
2: 'fea_up1',
3: 'fea_up0',
4: 'fea_up-1'
}
affineInCh = self.get_affineInCh(opt_get)
flow_permutation = self.get_flow_permutation(flow_permutation, opt)
normOpt = opt_get(opt, ['network_G', 'flow', 'norm'])
conditional_channels = {}
n_rrdb = self.get_n_rrdb_channels(opt, opt_get)
n_bypass_channels = opt_get(opt, ['network_G', 'flow', 'levelConditional', 'n_channels'])
conditional_channels[0] = n_rrdb
for level in range(1, self.L + 1):
# Level 1 gets conditionals from 2, 3, 4 => L - level
# Level 2 gets conditionals from 3, 4
# Level 3 gets conditionals from 4
# Level 4 gets conditionals from None
n_bypass = 0 if n_bypass_channels is None else (self.L - level) * n_bypass_channels
conditional_channels[level] = n_rrdb + n_bypass
# Upsampler
for level in range(1, self.L + 1):
# 1. Squeeze
H, W = self.arch_squeeze(H, W)
# 2. K FlowStep
self.arch_additionalFlowAffine(H, LU_decomposed, W, actnorm_scale, hidden_channels, opt)
self.arch_FlowStep(H, self.K[level], LU_decomposed, W, actnorm_scale, affineInCh, flow_coupling,
flow_permutation,
hidden_channels, normOpt, opt, opt_get,
n_conditinal_channels=conditional_channels[level])
# Split
self.arch_split(H, W, level, self.L, opt, opt_get)
if opt_get(opt, ['network_G', 'flow', 'split', 'enable']):
self.f = f_conv2d_bias(affineInCh, 2 * 3 * 64 // 2 // 2)
else:
self.f = f_conv2d_bias(affineInCh, 2 * 3 * 64)
self.H = H
self.W = W
self.scaleH = 160 / H
self.scaleW = 160 / W
def get_n_rrdb_channels(self, opt, opt_get):
blocks = opt_get(opt, ['network_G', 'flow', 'stackRRDB', 'blocks'])
n_rrdb = 64 if blocks is None else (len(blocks) + 1) * 64
return n_rrdb
def arch_FlowStep(self, H, K, LU_decomposed, W, actnorm_scale, affineInCh, flow_coupling, flow_permutation,
hidden_channels, normOpt, opt, opt_get, n_conditinal_channels=None):
condAff = self.get_condAffSetting(opt, opt_get)
if condAff is not None:
condAff['in_channels_rrdb'] = n_conditinal_channels
for k in range(K):
position_name = get_position_name(H, self.opt['scale'])
if normOpt: normOpt['position'] = position_name
self.layers.append(
FlowStep(in_channels=self.C,
hidden_channels=hidden_channels,
actnorm_scale=actnorm_scale,
flow_permutation=flow_permutation,
flow_coupling=flow_coupling,
acOpt=condAff,
position=position_name,
LU_decomposed=LU_decomposed, opt=opt, idx=k, normOpt=normOpt))
self.output_shapes.append(
[-1, self.C, H, W])
def get_condAffSetting(self, opt, opt_get):
condAff = opt_get(opt, ['network_G', 'flow', 'condAff']) or None
condAff = opt_get(opt, ['network_G', 'flow', 'condFtAffine']) or condAff
return condAff
def arch_split(self, H, W, L, levels, opt, opt_get):
correct_splits = opt_get(opt, ['network_G', 'flow', 'split', 'correct_splits'], False)
correction = 0 if correct_splits else 1
if opt_get(opt, ['network_G', 'flow', 'split', 'enable']) and L < levels - correction:
logs_eps = opt_get(opt, ['network_G', 'flow', 'split', 'logs_eps']) or 0
consume_ratio = opt_get(opt, ['network_G', 'flow', 'split', 'consume_ratio']) or 0.5
position_name = get_position_name(H, self.opt['scale'])
position = position_name if opt_get(opt, ['network_G', 'flow', 'split', 'conditional']) else None
cond_channels = opt_get(opt, ['network_G', 'flow', 'split', 'cond_channels'])
cond_channels = 0 if cond_channels is None else cond_channels
t = opt_get(opt, ['network_G', 'flow', 'split', 'type'], 'Split2d')
if t == 'Split2d':
split = models.modules.Split.Split2d(num_channels=self.C, logs_eps=logs_eps, position=position,
cond_channels=cond_channels, consume_ratio=consume_ratio, opt=opt)
self.layers.append(split)
self.output_shapes.append([-1, split.num_channels_pass, H, W])
self.C = split.num_channels_pass
def arch_additionalFlowAffine(self, H, LU_decomposed, W, actnorm_scale, hidden_channels, opt):
if 'additionalFlowNoAffine' in opt['network_G']['flow']:
n_additionalFlowNoAffine = int(opt['network_G']['flow']['additionalFlowNoAffine'])
for _ in range(n_additionalFlowNoAffine):
self.layers.append(
FlowStep(in_channels=self.C,
hidden_channels=hidden_channels,
actnorm_scale=actnorm_scale,
flow_permutation='invconv',
flow_coupling='noCoupling',
LU_decomposed=LU_decomposed, opt=opt))
self.output_shapes.append(
[-1, self.C, H, W])
def arch_squeeze(self, H, W):
self.C, H, W = self.C * 4, H // 2, W // 2
self.layers.append(flow.SqueezeLayer(factor=2))
self.output_shapes.append([-1, self.C, H, W])
return H, W
def get_flow_permutation(self, flow_permutation, opt):
flow_permutation = opt['network_G']['flow'].get('flow_permutation', 'invconv')
return flow_permutation
def get_affineInCh(self, opt_get):
affineInCh = opt_get(self.opt, ['network_G', 'flow', 'stackRRDB', 'blocks']) or []
affineInCh = (len(affineInCh) + 1) * 64
return affineInCh
def check_image_shape(self):
assert self.C == 1 or self.C == 3, ("image_shape should be HWC, like (64, 64, 3)"
"self.C == 1 or self.C == 3")
def forward(self, gt=None, rrdbResults=None, z=None, epses=None, logdet=0., reverse=False, eps_std=None,
y_onehot=None):
if reverse:
epses_copy = [eps for eps in epses] if isinstance(epses, list) else epses
sr, logdet = self.decode(rrdbResults, z, eps_std, epses=epses_copy, logdet=logdet, y_onehot=y_onehot)
return sr, logdet
else:
assert gt is not None
assert rrdbResults is not None
z, logdet = self.encode(gt, rrdbResults, logdet=logdet, epses=epses, y_onehot=y_onehot)
return z, logdet
def encode(self, gt, rrdbResults, logdet=0.0, epses=None, y_onehot=None):
fl_fea = gt
reverse = False
level_conditionals = {}
bypasses = {}
L = opt_get(self.opt, ['network_G', 'flow', 'L'])
for level in range(1, L + 1):
bypasses[level] = torch.nn.functional.interpolate(gt, scale_factor=2 ** -level, mode='bilinear', align_corners=False)
for layer, shape in zip(self.layers, self.output_shapes):
size = shape[2]
level = int(np.log(160 / size) / np.log(2))
if level > 0 and level not in level_conditionals.keys():
level_conditionals[level] = rrdbResults[self.levelToName[level]]
level_conditionals[level] = rrdbResults[self.levelToName[level]]
if isinstance(layer, FlowStep):
fl_fea, logdet = layer(fl_fea, logdet, reverse=reverse, rrdbResults=level_conditionals[level])
elif isinstance(layer, Split2d):
fl_fea, logdet = self.forward_split2d(epses, fl_fea, layer, logdet, reverse, level_conditionals[level],
y_onehot=y_onehot)
else:
fl_fea, logdet = layer(fl_fea, logdet, reverse=reverse)
z = fl_fea
if not isinstance(epses, list):
return z, logdet
epses.append(z)
return epses, logdet
def forward_preFlow(self, fl_fea, logdet, reverse):
if hasattr(self, 'preFlow'):
for l in self.preFlow:
fl_fea, logdet = l(fl_fea, logdet, reverse=reverse)
return fl_fea, logdet
def forward_split2d(self, epses, fl_fea, layer, logdet, reverse, rrdbResults, y_onehot=None):
ft = None if layer.position is None else rrdbResults[layer.position]
fl_fea, logdet, eps = layer(fl_fea, logdet, reverse=reverse, eps=epses, ft=ft, y_onehot=y_onehot)
if isinstance(epses, list):
epses.append(eps)
return fl_fea, logdet
def decode(self, rrdbResults, z, eps_std=None, epses=None, logdet=0.0, y_onehot=None):
z = epses.pop() if isinstance(epses, list) else z
fl_fea = z
# debug.imwrite("fl_fea", fl_fea)
bypasses = {}
level_conditionals = {}
if not opt_get(self.opt, ['network_G', 'flow', 'levelConditional', 'conditional']) == True:
for level in range(self.L + 1):
level_conditionals[level] = rrdbResults[self.levelToName[level]]
for layer, shape in zip(reversed(self.layers), reversed(self.output_shapes)):
size = shape[2]
level = int(np.log(160 / size) / np.log(2))
# size = fl_fea.shape[2]
# level = int(np.log(160 / size) / np.log(2))
if isinstance(layer, Split2d):
fl_fea, logdet = self.forward_split2d_reverse(eps_std, epses, fl_fea, layer,
rrdbResults[self.levelToName[level]], logdet=logdet,
y_onehot=y_onehot)
elif isinstance(layer, FlowStep):
fl_fea, logdet = layer(fl_fea, logdet=logdet, reverse=True, rrdbResults=level_conditionals[level])
else:
fl_fea, logdet = layer(fl_fea, logdet=logdet, reverse=True)
sr = fl_fea
assert sr.shape[1] == 3
return sr, logdet
def forward_split2d_reverse(self, eps_std, epses, fl_fea, layer, rrdbResults, logdet, y_onehot=None):
ft = None if layer.position is None else rrdbResults[layer.position]
fl_fea, logdet = layer(fl_fea, logdet=logdet, reverse=True,
eps=epses.pop() if isinstance(epses, list) else None,
eps_std=eps_std, ft=ft, y_onehot=y_onehot)
return fl_fea, logdet
def get_position_name(H, scale):
downscale_factor = 160 // H
position_name = 'fea_up{}'.format(scale / downscale_factor)
return position_name