449 lines
23 KiB
Python
449 lines
23 KiB
Python
import itertools
|
|
import os
|
|
import random
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import torchaudio
|
|
import torchvision
|
|
|
|
from models.diffusion.nn import timestep_embedding, normalization, zero_module, conv_nd, linear
|
|
from models.diffusion.unet_diffusion import TimestepBlock
|
|
from models.lucidrains.x_transformers import Encoder, Attention, RMSScaleShiftNorm, RotaryEmbedding, \
|
|
FeedForward
|
|
from trainer.networks import register_model
|
|
from utils.util import checkpoint, print_network, load_audio
|
|
|
|
|
|
class TimestepRotaryEmbedSequential(nn.Sequential, TimestepBlock):
|
|
def forward(self, x, emb, rotary_emb):
|
|
for layer in self:
|
|
if isinstance(layer, TimestepBlock):
|
|
x = layer(x, emb, rotary_emb)
|
|
else:
|
|
x = layer(x, rotary_emb)
|
|
return x
|
|
|
|
|
|
class SubBlock(nn.Module):
|
|
def __init__(self, inp_dim, contraction_dim, heads, dropout, use_conv):
|
|
super().__init__()
|
|
self.attn = Attention(inp_dim, out_dim=contraction_dim, heads=heads, dim_head=contraction_dim//heads, causal=False, dropout=dropout)
|
|
self.attnorm = nn.LayerNorm(contraction_dim)
|
|
self.use_conv = use_conv
|
|
if use_conv:
|
|
self.ff = nn.Conv1d(inp_dim+contraction_dim, contraction_dim, kernel_size=3, padding=1)
|
|
else:
|
|
self.ff = FeedForward(inp_dim+contraction_dim, dim_out=contraction_dim, mult=2, dropout=dropout)
|
|
self.ffnorm = nn.LayerNorm(contraction_dim)
|
|
|
|
def forward(self, x, rotary_emb):
|
|
ah, _, _, _ = checkpoint(self.attn, x, None, None, None, None, None, rotary_emb)
|
|
ah = F.gelu(self.attnorm(ah))
|
|
h = torch.cat([ah, x], dim=-1)
|
|
hf = checkpoint(self.ff, h.permute(0,2,1) if self.use_conv else h)
|
|
hf = F.gelu(self.ffnorm(hf.permute(0,2,1) if self.use_conv else hf))
|
|
h = torch.cat([h, hf], dim=-1)
|
|
return h
|
|
|
|
|
|
class ConcatAttentionBlock(TimestepBlock):
|
|
def __init__(self, trunk_dim, contraction_dim, time_embed_dim, cond_dim_in, cond_dim_hidden, heads, dropout, cond_projection=True, use_conv=False):
|
|
super().__init__()
|
|
self.prenorm = RMSScaleShiftNorm(trunk_dim, embed_dim=time_embed_dim, bias=False)
|
|
if cond_projection:
|
|
self.tdim = trunk_dim+cond_dim_hidden
|
|
self.cond_project = nn.Linear(cond_dim_in, cond_dim_hidden)
|
|
else:
|
|
self.tdim = trunk_dim
|
|
self.block1 = SubBlock(self.tdim, contraction_dim, heads, dropout, use_conv)
|
|
self.block2 = SubBlock(self.tdim+contraction_dim*2, contraction_dim, heads, dropout, use_conv)
|
|
self.out = nn.Linear(contraction_dim*4, trunk_dim, bias=False)
|
|
self.out.weight.data.zero_()
|
|
|
|
def forward(self, x, cond, timestep_emb, rotary_emb):
|
|
h = self.prenorm(x, norm_scale_shift_inp=timestep_emb)
|
|
if hasattr(self, 'cond_project'):
|
|
cond = self.cond_project(cond)
|
|
h = torch.cat([h, cond], dim=-1)
|
|
h = self.block1(h, rotary_emb)
|
|
h = self.block2(h, rotary_emb)
|
|
h = self.out(h[:,:,self.tdim:])
|
|
return h + x
|
|
|
|
|
|
class ConditioningEncoder(nn.Module):
|
|
def __init__(self,
|
|
cond_dim,
|
|
embedding_dim,
|
|
time_embed_dim,
|
|
attn_blocks=6,
|
|
num_attn_heads=8,
|
|
dropout=.1,
|
|
do_checkpointing=False,
|
|
time_proj=True):
|
|
super().__init__()
|
|
self.init = nn.Conv1d(cond_dim, embedding_dim, kernel_size=1)
|
|
self.time_proj = time_proj
|
|
if time_proj:
|
|
self.time_proj = nn.Linear(time_embed_dim, embedding_dim)
|
|
self.attn = Encoder(
|
|
dim=embedding_dim,
|
|
depth=attn_blocks,
|
|
heads=num_attn_heads,
|
|
ff_dropout=dropout,
|
|
attn_dropout=dropout,
|
|
use_rmsnorm=True,
|
|
ff_glu=True,
|
|
rotary_pos_emb=True,
|
|
zero_init_branch_output=True,
|
|
ff_mult=2,
|
|
do_checkpointing=do_checkpointing
|
|
)
|
|
self.dim = embedding_dim
|
|
|
|
def forward(self, x, time_emb):
|
|
h = self.init(x).permute(0,2,1)
|
|
if self.time_proj:
|
|
time_enc = self.time_proj(time_emb)
|
|
h = torch.cat([time_enc.unsqueeze(1), h], dim=1)
|
|
h = self.attn(h).permute(0,2,1)
|
|
return h
|
|
|
|
|
|
class TransformerDiffusionWithPointConditioning(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels=256,
|
|
out_channels=512, # mean and variance
|
|
model_channels=1024,
|
|
contraction_dim=256,
|
|
time_embed_dim=256,
|
|
num_layers=8,
|
|
rotary_emb_dim=32,
|
|
input_cond_dim=1024,
|
|
num_heads=8,
|
|
dropout=0,
|
|
time_proj=True,
|
|
new_cond=False,
|
|
use_fp16=False,
|
|
checkpoint_conditioning=True, # This will need to be false for DDP training. :(
|
|
regularization=False,
|
|
# Parameters for regularization.
|
|
unconditioned_percentage=.1, # This implements a mechanism similar to what is used in classifier-free training.
|
|
):
|
|
super().__init__()
|
|
|
|
self.in_channels = in_channels
|
|
self.model_channels = model_channels
|
|
self.time_embed_dim = time_embed_dim
|
|
self.out_channels = out_channels
|
|
self.dropout = dropout
|
|
self.unconditioned_percentage = unconditioned_percentage
|
|
self.enable_fp16 = use_fp16
|
|
self.regularization = regularization
|
|
self.new_cond = new_cond
|
|
|
|
self.inp_block = conv_nd(1, in_channels, model_channels, 3, 1, 1)
|
|
self.conditioning_encoder = ConditioningEncoder(256, model_channels, time_embed_dim, do_checkpointing=checkpoint_conditioning, time_proj=time_proj)
|
|
|
|
self.time_embed = nn.Sequential(
|
|
linear(time_embed_dim, time_embed_dim),
|
|
nn.SiLU(),
|
|
linear(time_embed_dim, time_embed_dim),
|
|
)
|
|
|
|
self.unconditioned_embedding = nn.Parameter(torch.randn(1,1,model_channels))
|
|
self.rotary_embeddings = RotaryEmbedding(rotary_emb_dim)
|
|
self.layers = TimestepRotaryEmbedSequential(*[ConcatAttentionBlock(model_channels,
|
|
contraction_dim,
|
|
time_embed_dim,
|
|
cond_dim_in=input_cond_dim,
|
|
cond_dim_hidden=input_cond_dim//2,
|
|
heads=num_heads,
|
|
dropout=dropout,
|
|
cond_projection=(k % 3 == 0),
|
|
use_conv=(k % 3 != 0),
|
|
) for k in range(num_layers)])
|
|
self.out = nn.Sequential(
|
|
normalization(model_channels),
|
|
nn.SiLU(),
|
|
zero_module(conv_nd(1, model_channels, out_channels, 3, padding=1)),
|
|
)
|
|
self.debug_codes = {}
|
|
|
|
def get_grad_norm_parameter_groups(self):
|
|
attn1 = list(itertools.chain.from_iterable([lyr.block1.attn.parameters() for lyr in self.layers]))
|
|
attn2 = list(itertools.chain.from_iterable([lyr.block2.attn.parameters() for lyr in self.layers]))
|
|
ff1 = list(itertools.chain.from_iterable([lyr.block1.ff.parameters() for lyr in self.layers]))
|
|
ff2 = list(itertools.chain.from_iterable([lyr.block2.ff.parameters() for lyr in self.layers]))
|
|
blkout_layers = list(itertools.chain.from_iterable([lyr.out.parameters() for lyr in self.layers]))
|
|
groups = {
|
|
'prenorms': list(itertools.chain.from_iterable([lyr.prenorm.parameters() for lyr in self.layers])),
|
|
'blk1_attention_layers': attn1,
|
|
'blk2_attention_layers': attn2,
|
|
'attention_layers': attn1 + attn2,
|
|
'blk1_ff_layers': ff1,
|
|
'blk2_ff_layers': ff2,
|
|
'ff_layers': ff1 + ff2,
|
|
'block_out_layers': blkout_layers,
|
|
'rotary_embeddings': list(self.rotary_embeddings.parameters()),
|
|
'out': list(self.out.parameters()),
|
|
'x_proj': list(self.inp_block.parameters()),
|
|
'layers': list(self.layers.parameters()),
|
|
'time_embed': list(self.time_embed.parameters()),
|
|
'conditioning_encoder': list(self.conditioning_encoder.parameters()),
|
|
}
|
|
return groups
|
|
|
|
def process_conditioning(self, conditioning_input, time_emb, N, cond_start, cond_left, cond_right):
|
|
if self.training and self.regularization:
|
|
# frequency regularization
|
|
fstart = random.randint(0, conditioning_input.shape[1] - 1)
|
|
fclip = random.randint(1, min(conditioning_input.shape[1]-fstart, 16))
|
|
conditioning_input[:,fstart:fstart+fclip] = 0
|
|
# time regularization
|
|
for k in range(1, random.randint(2, 4)):
|
|
tstart = random.randint(0, conditioning_input.shape[-1] - 1)
|
|
tclip = random.randint(1, min(conditioning_input.shape[-1]-tstart, 10))
|
|
conditioning_input[:,:,tstart:tstart+tclip] = 0
|
|
|
|
if cond_left is None and self.new_cond:
|
|
assert cond_start > 20 and (cond_start+N+20 <= conditioning_input.shape[-1]), f'{cond_start}, {N}, {conditioning_input.shape}'
|
|
cond_left = conditioning_input[:,:,:cond_start]
|
|
left_pt = -1
|
|
cond_right = conditioning_input[:,:,cond_start+N:]
|
|
right_pt = 0
|
|
|
|
if self.training:
|
|
# Arbitrarily restrict the context given. We should support short contexts and without this they are never encountered.
|
|
arb_context_cap = random.randint(50, 100)
|
|
if cond_left.shape[-1] > arb_context_cap and random.random() > .5:
|
|
cond_left = cond_left[:,:,-arb_context_cap:]
|
|
if cond_right.shape[-1] > arb_context_cap and random.random() > .5:
|
|
cond_right = cond_right[:,:,:arb_context_cap]
|
|
|
|
elif cond_left is None:
|
|
assert conditioning_input.shape[-1] - cond_start - N >= 0, f'Some sort of conditioning misalignment, {conditioning_input.shape[-1], cond_start, N}'
|
|
cond_pre = conditioning_input[:,:,:cond_start]
|
|
cond_aligned = conditioning_input[:,:,cond_start:N+cond_start]
|
|
cond_post = conditioning_input[:,:,N+cond_start:]
|
|
|
|
# Break up conditioning input into two random segments aligned with the input.
|
|
MIN_MARGIN = 8
|
|
assert N > (MIN_MARGIN*2+4), f"Input size too small. Was {N} but requires at least {MIN_MARGIN*2+4}"
|
|
break_pt = random.randint(2, N-MIN_MARGIN*2-2) + MIN_MARGIN
|
|
cond_left = cond_aligned[:,:,:break_pt]
|
|
cond_right = cond_aligned[:,:,break_pt:]
|
|
|
|
if self.training:
|
|
# Drop out a random amount of the aligned data. The network will need to figure out how to reconstruct this.
|
|
to_remove_left = random.randint(1, cond_left.shape[-1]-MIN_MARGIN)
|
|
cond_left = cond_left[:,:,:-to_remove_left]
|
|
to_remove_right = random.randint(1, cond_right.shape[-1]-MIN_MARGIN)
|
|
cond_right = cond_right[:,:,to_remove_right:]
|
|
|
|
# Concatenate the _pre and _post back on.
|
|
left_pt = cond_start
|
|
right_pt = cond_right.shape[-1]
|
|
cond_left = torch.cat([cond_pre, cond_left], dim=-1)
|
|
cond_right = torch.cat([cond_right, cond_post], dim=-1)
|
|
else:
|
|
left_pt = -1
|
|
right_pt = 0
|
|
|
|
# Propagate through the encoder.
|
|
cond_left_enc = self.conditioning_encoder(cond_left, time_emb)
|
|
cs = cond_left_enc[:,:,left_pt]
|
|
cond_right_enc = self.conditioning_encoder(cond_right, time_emb)
|
|
ce = cond_right_enc[:,:,right_pt]
|
|
|
|
cond_enc = torch.cat([cs.unsqueeze(-1), ce.unsqueeze(-1)], dim=-1)
|
|
cond = F.interpolate(cond_enc, size=(N,), mode='linear', align_corners=True).permute(0,2,1)
|
|
return cond
|
|
|
|
def forward(self, x, timesteps, conditioning_input=None, cond_left=None, cond_right=None, conditioning_free=False, cond_start=0):
|
|
unused_params = []
|
|
|
|
time_emb = self.time_embed(timestep_embedding(timesteps, self.time_embed_dim))
|
|
|
|
if conditioning_free:
|
|
cond = self.unconditioned_embedding
|
|
cond = cond.repeat(1,x.shape[-1],1)
|
|
else:
|
|
cond = self.process_conditioning(conditioning_input, time_emb, x.shape[-1], cond_start, cond_left, cond_right)
|
|
# Mask out the conditioning branch for whole batch elements, implementing something similar to classifier-free guidance.
|
|
if self.training and self.unconditioned_percentage > 0:
|
|
unconditioned_batches = torch.rand((cond.shape[0], 1, 1),
|
|
device=cond.device) < self.unconditioned_percentage
|
|
cond = torch.where(unconditioned_batches, self.unconditioned_embedding.repeat(cond.shape[0], 1, 1), cond)
|
|
unused_params.append(self.unconditioned_embedding)
|
|
|
|
with torch.autocast(x.device.type, enabled=self.enable_fp16):
|
|
x = self.inp_block(x).permute(0,2,1)
|
|
|
|
rotary_pos_emb = self.rotary_embeddings(x.shape[1]+1, x.device)
|
|
for layer in self.layers:
|
|
x = checkpoint(layer, x, cond, time_emb, rotary_pos_emb)
|
|
|
|
x = x.float().permute(0,2,1)
|
|
out = self.out(x)
|
|
|
|
# Involve probabilistic or possibly unused parameters in loss so we don't get DDP errors.
|
|
extraneous_addition = 0
|
|
for p in unused_params:
|
|
extraneous_addition = extraneous_addition + p.mean()
|
|
out = out + extraneous_addition * 0
|
|
|
|
return out
|
|
|
|
def before_step(self, step):
|
|
scaled_grad_parameters = list(itertools.chain.from_iterable([lyr.out.parameters() for lyr in self.layers])) + \
|
|
list(itertools.chain.from_iterable([lyr.prenorm.parameters() for lyr in self.layers]))
|
|
|
|
# Scale back the gradients of the blkout and prenorm layers by a constant factor. These get two orders of magnitudes
|
|
# higher gradients. Ideally we would use parameter groups, but ZeroRedundancyOptimizer makes this trickier than
|
|
# directly fiddling with the gradients.
|
|
for p in scaled_grad_parameters:
|
|
if hasattr(p, 'grad') and p.grad is not None:
|
|
p.grad *= .2
|
|
|
|
|
|
@register_model
|
|
def register_tfdpc5(opt_net, opt):
|
|
return TransformerDiffusionWithPointConditioning(**opt_net['kwargs'])
|
|
|
|
|
|
def test_cheater_model():
|
|
clip = torch.randn(2, 256, 350)
|
|
cl = torch.randn(2, 256, 646)
|
|
ts = torch.LongTensor([600, 600])
|
|
|
|
# For music:
|
|
model = TransformerDiffusionWithPointConditioning(in_channels=256, out_channels=512, model_channels=1024,
|
|
contraction_dim=512, num_heads=8, num_layers=32, dropout=0,
|
|
unconditioned_percentage=.4, checkpoint_conditioning=False,
|
|
regularization=True, new_cond=True)
|
|
print_network(model)
|
|
#for cs in range(276,cl.shape[-1]-clip.shape[-1]):
|
|
# o = model(clip, ts, cl, cond_start=cs)
|
|
pg = model.get_grad_norm_parameter_groups()
|
|
def prmsz(lp):
|
|
sz = 0
|
|
for p in lp:
|
|
q = 1
|
|
for s in p.shape:
|
|
q *= s
|
|
sz += q
|
|
return sz
|
|
for k, v in pg.items():
|
|
print(f'{k}: {prmsz(v)/1000000}')
|
|
|
|
|
|
def test_conditioning_splitting_logic():
|
|
ts = torch.LongTensor([600])
|
|
class fake_conditioner(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
def forward(self, t, _):
|
|
print(t[:,0])
|
|
return t
|
|
model = TransformerDiffusionWithPointConditioning(in_channels=256, out_channels=512, model_channels=1024,
|
|
contraction_dim=512, num_heads=8, num_layers=15, dropout=0,
|
|
unconditioned_percentage=.4)
|
|
model.conditioning_encoder = fake_conditioner()
|
|
BASEDIM=30
|
|
for x in range(BASEDIM+1, BASEDIM+20):
|
|
start = random.randint(0,x-BASEDIM)
|
|
cl = torch.arange(1, x+1, 1).view(1,1,-1).float().repeat(1,256,1)
|
|
print("Effective input: " + str(cl[0, 0, start:BASEDIM+start]))
|
|
res = model.process_conditioning(cl, ts, BASEDIM, start, None)
|
|
print("Result: " + str(res[0,:,0]))
|
|
print()
|
|
|
|
|
|
def inference_tfdpc5_with_cheater():
|
|
with torch.no_grad():
|
|
os.makedirs('results/tfdpc_v3', exist_ok=True)
|
|
|
|
# length = 40 * 22050 // 256 // 16
|
|
samples = {'electronica1': load_audio('Y:\\split\\yt-music-eval\\00001.wav', 22050),
|
|
'electronica2': load_audio('Y:\\split\\yt-music-eval\\00272.wav', 22050),
|
|
'e_guitar': load_audio('Y:\\split\\yt-music-eval\\00227.wav', 22050),
|
|
'creep': load_audio('Y:\\separated\\bt-music-3\\[2007] MTV Unplugged (Live) (Japan Edition)\\05 - Creep [Cover On Radiohead]\\00001\\no_vocals.wav', 22050),
|
|
'rock1': load_audio('Y:\\separated\\bt-music-3\\2016 - Heal My Soul\\01 - Daze Of The Night\\00000\\no_vocals.wav', 22050),
|
|
'kiss': load_audio('Y:\\separated\\bt-music-3\\KISS (2001) Box Set CD1\\02 Deuce (Demo Version)\\00000\\no_vocals.wav', 22050),
|
|
'purp': load_audio('Y:\\separated\\bt-music-3\\Shades of Deep Purple\\11 Help (Alternate Take)\\00001\\no_vocals.wav', 22050),
|
|
'western_stars': load_audio('Y:\\separated\\bt-music-3\\Western Stars\\01 Hitch Hikin\'\\00000\\no_vocals.wav', 22050),
|
|
'silk': load_audio('Y:\\separated\\silk\\MonstercatSilkShowcase\\890\\00007\\no_vocals.wav', 22050),
|
|
'long_electronica': load_audio('C:\\Users\\James\\Music\\longer_sample.wav', 22050),}
|
|
for k, sample in samples.items():
|
|
sample = sample.cuda()
|
|
length = sample.shape[0]//256//16
|
|
|
|
model = TransformerDiffusionWithPointConditioning(in_channels=256, out_channels=512, model_channels=1024,
|
|
contraction_dim=512, num_heads=8, num_layers=12, dropout=0,
|
|
use_fp16=False, unconditioned_percentage=0).eval().cuda()
|
|
model.load_state_dict(torch.load('x:/dlas/experiments/train_music_cheater_gen_v3/models/59000_generator_ema.pth'))
|
|
|
|
from trainer.injectors.audio_injectors import TorchMelSpectrogramInjector
|
|
spec_fn = TorchMelSpectrogramInjector({'n_mel_channels': 256, 'mel_fmax': 11000, 'filter_length': 16000, 'true_normalization': True,
|
|
'normalize': True, 'in': 'in', 'out': 'out'}, {}).cuda()
|
|
ref_mel = spec_fn({'in': sample.unsqueeze(0)})['out']
|
|
from trainer.injectors.audio_injectors import MusicCheaterLatentInjector
|
|
cheater_encoder = MusicCheaterLatentInjector({'in': 'in', 'out': 'out'}, {}).cuda()
|
|
ref_cheater = cheater_encoder({'in': ref_mel})['out']
|
|
|
|
from models.diffusion.respace import SpacedDiffusion
|
|
from models.diffusion.respace import space_timesteps
|
|
from models.diffusion.gaussian_diffusion import get_named_beta_schedule
|
|
diffuser = SpacedDiffusion(use_timesteps=space_timesteps(4000, [128]), model_mean_type='epsilon',
|
|
model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', 4000),
|
|
conditioning_free=True, conditioning_free_k=1)
|
|
|
|
# Conventional decoding method:
|
|
gen_cheater = diffuser.ddim_sample_loop(model, (1,256,length), progress=True, model_kwargs={'true_cheater': ref_cheater})
|
|
|
|
# Guidance decoding method:
|
|
#mask = torch.ones_like(ref_cheater)
|
|
#mask[:,:,15:-15] = 0
|
|
#gen_cheater = diffuser.p_sample_loop_with_guidance(model, ref_cheater, mask, model_kwargs={'true_cheater': ref_cheater})
|
|
|
|
# Just decode the ref.
|
|
#gen_cheater = ref_cheater
|
|
|
|
from models.audio.music.transformer_diffusion12 import TransformerDiffusionWithCheaterLatent
|
|
diffuser = SpacedDiffusion(use_timesteps=space_timesteps(4000, [32]), model_mean_type='epsilon',
|
|
model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', 4000),
|
|
conditioning_free=True, conditioning_free_k=1)
|
|
wrap = TransformerDiffusionWithCheaterLatent(in_channels=256, out_channels=512, model_channels=1024,
|
|
contraction_dim=512, prenet_channels=1024, input_vec_dim=256,
|
|
prenet_layers=6, num_heads=8, num_layers=16, new_code_expansion=True,
|
|
dropout=0, unconditioned_percentage=0).eval().cuda()
|
|
wrap.load_state_dict(torch.load('x:/dlas/experiments/train_music_diffusion_tfd_cheater_from_scratch/models/56500_generator_ema.pth'))
|
|
cheater_to_mel = wrap.diff
|
|
gen_mel = diffuser.ddim_sample_loop(cheater_to_mel, (1,256,gen_cheater.shape[-1]*16), progress=True,
|
|
model_kwargs={'codes': gen_cheater.permute(0,2,1)})
|
|
torchvision.utils.save_image((gen_mel + 1)/2, f'results/tfdpc_v3/{k}.png')
|
|
|
|
from utils.music_utils import get_mel2wav_v3_model
|
|
m2w = get_mel2wav_v3_model().cuda()
|
|
spectral_diffuser = SpacedDiffusion(use_timesteps=space_timesteps(4000, [32]), model_mean_type='epsilon',
|
|
model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', 4000),
|
|
conditioning_free=True, conditioning_free_k=1)
|
|
from trainer.injectors.audio_injectors import denormalize_mel
|
|
gen_mel_denorm = denormalize_mel(gen_mel)
|
|
output_shape = (1,16,gen_mel_denorm.shape[-1]*256//16)
|
|
gen_wav = spectral_diffuser.ddim_sample_loop(m2w, output_shape, model_kwargs={'codes': gen_mel_denorm})
|
|
from trainer.injectors.audio_injectors import pixel_shuffle_1d
|
|
gen_wav = pixel_shuffle_1d(gen_wav, 16)
|
|
|
|
torchaudio.save(f'results/tfdpc_v3/{k}.wav', gen_wav.squeeze(1).cpu(), 22050)
|
|
torchaudio.save(f'results/tfdpc_v3/{k}_ref.wav', sample.unsqueeze(0).cpu(), 22050)
|
|
|
|
if __name__ == '__main__':
|
|
test_cheater_model()
|
|
#test_conditioning_splitting_logic()
|
|
#inference_tfdpc5_with_cheater()
|