DL-Art-School/codes/models/gpt_voice/lucidrains_gpt.py
James Betker cdee31c60b GPT_ASR
2021-08-13 15:02:18 -06:00

198 lines
5.3 KiB
Python

from inspect import isfunction
import torch
from torch import nn, einsum
import torch.nn.functional as F
from einops import rearrange
# helpers
from models.gpt_voice.reversible import ReversibleSequence, SequentialSequence
from utils.util import sequential_checkpoint
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def cast_tuple(val, depth = 1):
if isinstance(val, list):
val = tuple(val)
return val if isinstance(val, tuple) else (val,) * depth
class DivideMax(nn.Module):
def __init__(self, dim):
super().__init__()
self.dim = dim
def forward(self, x):
maxes = x.amax(dim = self.dim, keepdim = True)
return x / maxes
# https://arxiv.org/abs/2103.17239
class LayerScale(nn.Module):
def __init__(self, dim, depth, fn):
super().__init__()
if depth <= 18:
init_eps = 0.1
elif depth > 18 and depth <= 24:
init_eps = 1e-5
else:
init_eps = 1e-6
scale = torch.zeros(1, 1, dim).fill_(init_eps)
self.scale = nn.Parameter(scale)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(x, **kwargs) * self.scale
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)
class GEGLU(nn.Module):
def forward(self, x):
x, gates = x.chunk(2, dim = -1)
return x * F.gelu(gates)
class FeedForward(nn.Module):
def __init__(self, dim, dropout = 0., mult = 4.):
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, dim * mult * 2),
GEGLU(),
nn.Dropout(dropout),
nn.Linear(dim * mult, dim)
)
def forward(self, x):
return self.net(x)
def exists(val):
return val is not None
def uniq(arr):
return{el: True for el in arr}.keys()
def default(val, d):
if exists(val):
return val
return d() if isfunction(d) else d
def max_neg_value(t):
return -torch.finfo(t.dtype).max
def stable_softmax(t, dim = -1, alpha = 32 ** 2):
t = t / alpha
t = t - torch.amax(t, dim = dim, keepdim = True)
return (t * alpha).softmax(dim = dim)
# classes
class Attention(nn.Module):
def __init__(self, dim, seq_len, non_causal_sequence_partition = 0, heads = 8, dim_head = 64, dropout = 0., stable = False):
super().__init__()
inner_dim = dim_head * heads
self.heads = heads
self.seq_len = seq_len
self.scale = dim_head ** -0.5
self.stable = stable
self.non_causal_sequence_partition = non_causal_sequence_partition
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x, mask = None):
b, n, _, h, device = *x.shape, self.heads, x.device
softmax = torch.softmax if not self.stable else stable_softmax
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv)
q = q * self.scale
dots = torch.einsum('b h i d, b h j d -> b h i j', q, k)
mask_value = max_neg_value(dots)
if exists(mask):
mask = rearrange(mask, 'b j -> b () () j')
dots.masked_fill_(~mask, mask_value)
del mask
i, j = dots.shape[-2:]
mask = torch.ones(i, j, device = device).triu_(j - i + 1)
if self.non_causal_sequence_partition > 0:
non_causal_mask = torch.ones((i, j), device=device)
non_causal_mask[:, :self.non_causal_sequence_partition] = 0
mask = mask * non_causal_mask
dots.masked_fill_(mask.bool(), mask_value)
attn = softmax(dots, dim=-1)
out = torch.einsum('b h i j, b h j d -> b h i d', attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
out = self.to_out(out)
return out
class Transformer(nn.Module):
def __init__(
self,
*,
dim,
depth,
seq_len,
reversible = False,
heads = 8,
dim_head = 64,
ff_mult = 4,
attn_dropout = 0.,
ff_dropout = 0.,
sparse_attn = False,
stable = False,
non_causal_sequence_partition=0,
):
super().__init__()
layers = nn.ModuleList([])
sparse_layer = cast_tuple(sparse_attn, depth)
for ind, sparse_attn in zip(range(depth), sparse_layer):
attn = Attention(dim, stable=stable, non_causal_sequence_partition = non_causal_sequence_partition, seq_len = seq_len, heads = heads, dim_head = dim_head, dropout = attn_dropout)
layers.append(nn.ModuleList([
LayerScale(dim, ind + 1, PreNorm(dim, attn)),
LayerScale(dim, ind + 1, PreNorm(dim, FeedForward(dim, mult = ff_mult, dropout = ff_dropout)))
]))
execute_type = ReversibleSequence if reversible else SequentialSequence
route_attn = ((True, False),) * depth
attn_route_map = {'mask': route_attn}
self.layers = execute_type(layers, args_route = attn_route_map)
def forward(self, x):
return self.layers(x)