87 lines
3.5 KiB
Python
87 lines
3.5 KiB
Python
import functools
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import models.archs.arch_util as arch_util
|
|
import torch
|
|
|
|
|
|
class HighToLowResNet(nn.Module):
|
|
''' ResNet that applies a noise channel to the input, then downsamples it four times using strides. Finally, the
|
|
input is upsampled to the desired downscale. Currently downscale=1,2,4 is supported.
|
|
'''
|
|
def __init__(self, in_nc=3, out_nc=3, nf=64, nb=16, downscale=4):
|
|
super(HighToLowResNet, self).__init__()
|
|
|
|
assert downscale in [1, 2, 4], "Requested downscale not supported; %i" % (downscale, )
|
|
self.downscale = downscale
|
|
|
|
# We will always apply a noise channel to the inputs, account for that here.
|
|
in_nc += 1
|
|
|
|
self.conv_first = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True)
|
|
|
|
# All sub-modules must be explicit members. Make it so. Then add them to a list.
|
|
self.trunk1 = arch_util.make_layer(functools.partial(arch_util.ResidualBlock_noBN, nf=nf), 4)
|
|
self.trunk2 = arch_util.make_layer(functools.partial(arch_util.ResidualBlock_noBN, nf=nf*2), 6)
|
|
self.trunk3 = arch_util.make_layer(functools.partial(arch_util.ResidualBlock_noBN, nf=nf*4), 12)
|
|
self.trunk4 = arch_util.make_layer(functools.partial(arch_util.ResidualBlock_noBN, nf=nf*8), 12)
|
|
self.trunks = [self.trunk1, self.trunk2, self.trunk3, self.trunk4]
|
|
self.trunkshapes = [4, 6, 12, 12]
|
|
|
|
self.r1 = nn.Conv2d(nf, nf*2, 3, stride=2, padding=1, bias=True)
|
|
self.r2 = nn.Conv2d(nf*2, nf*4, 3, stride=2, padding=1, bias=True)
|
|
self.r3 = nn.Conv2d(nf*4, nf*8, 3, stride=2, padding=1, bias=True)
|
|
self.reducers = [self.r1, self.r2, self.r3]
|
|
|
|
self.pixel_shuffle = nn.PixelShuffle(2)
|
|
|
|
self.a1 = nn.Conv2d(nf*2, nf*4, 3, stride=1, padding=1, bias=True)
|
|
self.a2 = nn.Conv2d(nf, nf*4, 3, stride=1, padding=1, bias=True)
|
|
self.a3 = nn.Conv2d(nf, nf, 3, stride=1, padding=1, bias=True)
|
|
self.assemblers = [self.a1, self.a2, self.a3]
|
|
|
|
if self.downscale == 1:
|
|
nf_last = nf
|
|
elif self.downscale == 2:
|
|
nf_last = nf * 4
|
|
elif self.downscale == 4:
|
|
nf_last = nf * 4
|
|
|
|
self.conv_last = nn.Conv2d(nf_last, out_nc, 3, stride=1, padding=1, bias=True)
|
|
|
|
# activation function
|
|
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
|
|
|
|
# initialization
|
|
arch_util.initialize_weights([self.conv_first, self.conv_last] + self.reducers + self.assemblers,
|
|
.1)
|
|
|
|
def forward(self, x):
|
|
# Noise has the same shape as the input with only one channel.
|
|
rand_feature = torch.randn((x.shape[0], 1) + x.shape[2:], device=x.device, dtype=x.dtype)
|
|
out = torch.cat([x, rand_feature], dim=1)
|
|
|
|
out = self.lrelu(self.conv_first(out))
|
|
skips = []
|
|
for i in range(4):
|
|
skips.append(out)
|
|
out = self.trunks[i](out)
|
|
if i < 3:
|
|
out = self.lrelu(self.reducers[i](out))
|
|
|
|
target_width = x.shape[-1] / self.downscale
|
|
i = 0
|
|
while out.shape[-1] != target_width:
|
|
out = self.pixel_shuffle(out)
|
|
out = self.lrelu(self.assemblers[i](out))
|
|
out = out + skips[-i-2]
|
|
i += 1
|
|
|
|
# TODO: Figure out where this magic number '12' comes from and fix it.
|
|
out = 12 * self.conv_last(out)
|
|
if self.downscale == 1:
|
|
base = x
|
|
else:
|
|
base = F.interpolate(x, scale_factor=1/self.downscale, mode='bilinear', align_corners=False)
|
|
return out + base
|