345 lines
18 KiB
Python
345 lines
18 KiB
Python
import functools
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from transformers import GPT2Model, GPT2Config
|
|
|
|
from models.arch_util import AttentionBlock
|
|
from models.gpt_voice.gpt_asr_hf import GPT2InferenceModel
|
|
from models.gpt_voice.gpt_asr_hf2 import ResBlock
|
|
from models.tacotron2.text import symbols
|
|
from trainer.networks import register_model
|
|
from utils.util import opt_get
|
|
|
|
|
|
class ConditioningEncoder(nn.Module):
|
|
def __init__(self,
|
|
spec_dim,
|
|
embedding_dim,
|
|
attn_blocks=6,
|
|
num_attn_heads=4,
|
|
do_checkpointing=False):
|
|
super().__init__()
|
|
attn = []
|
|
self.init = nn.Conv1d(spec_dim, embedding_dim, kernel_size=1)
|
|
for a in range(attn_blocks):
|
|
attn.append(AttentionBlock(embedding_dim, num_attn_heads, do_checkpoint=do_checkpointing))
|
|
self.attn = nn.Sequential(*attn)
|
|
self.dim = embedding_dim
|
|
self.do_checkpointing = do_checkpointing
|
|
|
|
def forward(self, x):
|
|
h = self.init(x)
|
|
h = self.attn(h)
|
|
return h[:, :, 0]
|
|
|
|
|
|
class MelEncoder(nn.Module):
|
|
def __init__(self, channels, mel_channels=80, resblocks_per_reduction=2):
|
|
super().__init__()
|
|
self.channels = channels
|
|
self.encoder = nn.Sequential(nn.Conv1d(mel_channels, channels//4, kernel_size=3, padding=1),
|
|
nn.Sequential(*[ResBlock(channels//4) for _ in range(resblocks_per_reduction)]),
|
|
nn.Conv1d(channels//4, channels//2, kernel_size=3, stride=2, padding=1),
|
|
nn.GroupNorm(channels//16, channels//2),
|
|
nn.ReLU(),
|
|
nn.Sequential(*[ResBlock(channels//2) for _ in range(resblocks_per_reduction)]),
|
|
nn.Conv1d(channels//2, channels, kernel_size=3, stride=2, padding=1),
|
|
nn.GroupNorm(channels//8, channels),
|
|
nn.ReLU(),
|
|
nn.Sequential(*[ResBlock(channels) for _ in range(resblocks_per_reduction)]),
|
|
)
|
|
self.reduction = 4
|
|
|
|
|
|
def forward(self, x):
|
|
for e in self.encoder:
|
|
x = e(x)
|
|
return x.permute(0,2,1)
|
|
|
|
|
|
def null_position_embeddings(range, dim):
|
|
return torch.zeros((range.shape[0], range.shape[1], dim), device=range.device)
|
|
|
|
|
|
class UnifiedGptVoice(nn.Module):
|
|
"""
|
|
Derived from GptTtsHf, but offers multiple modes of autoregressive operation:
|
|
- Text only
|
|
- Voice only
|
|
- Text conditioned on voice
|
|
- Voice conditioned on text
|
|
"""
|
|
|
|
def __init__(self, layers=8, model_dim=512, heads=8, max_text_tokens=120, max_mel_tokens=250, max_conditioning_inputs=1,
|
|
max_conditioning_length=60, shuffle_conditioning=True, mel_length_compression=1024, number_text_tokens=256,
|
|
start_text_token=255, stop_text_token=0, number_mel_codes=8194, start_mel_token=8192,
|
|
stop_mel_token=8193, train_solo_embeddings=False, use_mel_codes_as_input=True,
|
|
checkpointing=True):
|
|
"""
|
|
Args:
|
|
layers: Number of layers in transformer stack.
|
|
model_dim: Operating dimensions of the transformer
|
|
heads: Number of transformer heads. Must be divisible by model_dim. Recommend model_dim//64
|
|
max_text_tokens: Maximum number of text tokens that will be encountered by model.
|
|
max_mel_tokens: Maximum number of MEL tokens that will be encountered by model.
|
|
max_conditioning_inputs: Maximum number of conditioning inputs provided to the model. If (1), conditioning input can be of format (b,80,s), otherwise (b,n,80,s).
|
|
max_conditioning_length: Maximum length of conditioning input. Only needed if shuffle_conditioning=True
|
|
shuffle_conditioning: Whether or not the conditioning inputs will be shuffled across the sequence dimension. Useful if you want to provide the same input as conditioning and mel_codes.
|
|
mel_length_compression: The factor between <number_input_samples> and <mel_tokens>. Used to compute MEL code padding given wav input length.
|
|
number_text_tokens:
|
|
start_text_token:
|
|
stop_text_token:
|
|
number_mel_codes:
|
|
start_mel_token:
|
|
stop_mel_token:
|
|
train_solo_embeddings:
|
|
use_mel_codes_as_input:
|
|
checkpointing:
|
|
"""
|
|
super().__init__()
|
|
|
|
self.number_text_tokens = number_text_tokens
|
|
self.start_text_token = start_text_token
|
|
self.stop_text_token = stop_text_token
|
|
self.number_mel_codes = number_mel_codes
|
|
self.start_mel_token = start_mel_token
|
|
self.stop_mel_token = stop_mel_token
|
|
self.shuffle_conditioning = shuffle_conditioning
|
|
|
|
self.max_mel_tokens = max_mel_tokens
|
|
self.max_text_tokens = max_text_tokens
|
|
self.model_dim = model_dim
|
|
self.max_conditioning_inputs = max_conditioning_inputs
|
|
self.mel_length_compression = mel_length_compression
|
|
self.conditioning_encoder = ConditioningEncoder(80, model_dim, num_attn_heads=heads)
|
|
self.text_embedding = nn.Embedding(self.number_text_tokens, model_dim)
|
|
self.text_pos_embedding = nn.Embedding(self.max_text_tokens + 2, model_dim)
|
|
self.mel_pos_embedding = nn.Embedding(self.max_mel_tokens + 2, model_dim)
|
|
seq_length = 4+max_text_tokens+self.max_mel_tokens+self.max_conditioning_inputs
|
|
self.gpt_config = GPT2Config(vocab_size=self.number_mel_codes,
|
|
n_positions=seq_length,
|
|
n_ctx=seq_length,
|
|
n_embd=model_dim,
|
|
n_layer=layers,
|
|
n_head=heads,
|
|
gradient_checkpointing=checkpointing,
|
|
use_cache=not checkpointing)
|
|
self.gpt = GPT2Model(self.gpt_config)
|
|
if train_solo_embeddings:
|
|
self.mel_solo_embedding = nn.Parameter(torch.randn(1, 1, model_dim) * self.gpt.config.initializer_range, requires_grad=True)
|
|
self.text_solo_embedding = nn.Parameter(torch.randn(1, 1, model_dim) * self.gpt.config.initializer_range, requires_grad=True)
|
|
else:
|
|
self.mel_solo_embedding = 0
|
|
self.text_solo_embedding = 0
|
|
# Override the built in positional embeddings
|
|
del self.gpt.wpe
|
|
self.gpt.wpe = functools.partial(null_position_embeddings, dim=model_dim)
|
|
|
|
if not use_mel_codes_as_input:
|
|
self.gpt.wte = MelEncoder(model_dim, resblocks_per_reduction=1)
|
|
|
|
self.final_norm = nn.LayerNorm(model_dim)
|
|
self.text_head = nn.Linear(model_dim, self.number_text_tokens)
|
|
self.mel_head = nn.Linear(model_dim, self.number_mel_codes)
|
|
self.max_conditioning_length = max_conditioning_length
|
|
|
|
# Initialize the embeddings per the GPT-2 scheme
|
|
for module in [self.text_embedding, self.text_pos_embedding, self.mel_pos_embedding]:
|
|
module.weight.data.normal_(mean=0.0, std=self.gpt.config.initializer_range)
|
|
if module.padding_idx is not None:
|
|
module.weight.data[module.padding_idx].zero_()
|
|
|
|
def build_aligned_inputs_and_targets(self, input, start_token, stop_token):
|
|
inp = F.pad(input, (1,0), value=start_token)
|
|
tar = F.pad(input, (0,1), value=stop_token)
|
|
return inp, tar
|
|
|
|
def set_mel_padding(self, mel_input_tokens, wav_lengths):
|
|
"""
|
|
Given mel tokens that are derived from a padded audio clip and the actual lengths of each batch element in
|
|
that audio clip, reformats the tokens with STOP_MEL_TOKEN in place of the zero padding. This is required
|
|
preformatting to create a working TTS model.
|
|
"""
|
|
# Set padding areas within MEL (currently it is coded with the MEL code for <zero>).
|
|
mel_lengths = wav_lengths // self.mel_length_compression
|
|
for b in range(len(mel_lengths)):
|
|
actual_end = mel_lengths[b] + 1 # Due to the convolutional nature of how these tokens are generated, it would be best if the model predicts a token past the actual last token.
|
|
if actual_end < mel_input_tokens.shape[-1]:
|
|
mel_input_tokens[b, actual_end:] = self.stop_mel_token
|
|
return mel_input_tokens
|
|
|
|
def randomly_permute_conditioning_input(self, speech_conditioning_input):
|
|
"""
|
|
Randomly permute the conditioning spectrogram, to destroy any structure present. Note that since the
|
|
conditioning input is derived from a discrete spectrogram, it does actually retain structure, but only a little
|
|
bit (actually: exactly how much we want; enough to discriminate different vocal qualities, but nothing about
|
|
what is being said).
|
|
"""
|
|
cond_input = speech_conditioning_input[:,:,torch.randperm(speech_conditioning_input.shape[-1])]
|
|
if cond_input.shape[-1] > self.max_conditioning_length:
|
|
cond_input = cond_input[:,:,:self.max_conditioning_length]
|
|
return cond_input
|
|
|
|
def get_logits(self, speech_conditioning_input, first_inputs, first_head, second_inputs=None, second_head=None, get_attns=False):
|
|
if second_inputs is not None:
|
|
emb = torch.cat([speech_conditioning_input, first_inputs, second_inputs], dim=1)
|
|
else:
|
|
emb = torch.cat([speech_conditioning_input, first_inputs], dim=1)
|
|
|
|
gpt_out = self.gpt(inputs_embeds=emb, return_dict=True, output_attentions=get_attns)
|
|
if get_attns:
|
|
return gpt_out.attentions
|
|
|
|
enc = gpt_out.last_hidden_state[:, 1:] # The first logit is tied to the speech_conditioning_input
|
|
enc = self.final_norm(enc)
|
|
first_logits = enc[:, :first_inputs.shape[1]]
|
|
first_logits = first_head(first_logits)
|
|
first_logits = first_logits.permute(0,2,1)
|
|
if second_inputs is not None:
|
|
second_logits = enc[:, -second_inputs.shape[1]:]
|
|
second_logits = second_head(second_logits)
|
|
second_logits = second_logits.permute(0,2,1)
|
|
return first_logits, second_logits
|
|
else:
|
|
return first_logits
|
|
|
|
def forward(self, speech_conditioning_input, text_inputs, text_lengths, mel_codes, wav_lengths, text_first=True, raw_mels=None, return_attentions=False):
|
|
"""
|
|
Forward pass that uses both text and voice in either text conditioning mode or voice conditioning mode
|
|
(actuated by `text_first`).
|
|
|
|
speech_conditioning_input: MEL float tensor, (b,80,s)
|
|
text_inputs: long tensor, (b,t)
|
|
text_lengths: long tensor, (b,)
|
|
mel_inputs: long tensor, (b,m)
|
|
wav_lengths: long tensor, (b,)
|
|
raw_mels: MEL float tensor (b,80,s)
|
|
"""
|
|
assert self.max_mel_tokens >= mel_codes.shape[1], f'{mel_codes.shape[1]}'
|
|
assert self.max_text_tokens >= text_inputs.shape[1], f'{text_inputs.shape[1]}'
|
|
|
|
# This model will receive micro-batches with a ton of padding for both the text and MELs. Ameliorate this by
|
|
# chopping the inputs by the maximum actual length.
|
|
max_text_len = text_lengths.max()
|
|
text_inputs = F.pad(text_inputs[:, :max_text_len], (0,1), value=self.stop_text_token)
|
|
max_mel_len = wav_lengths.max() // self.mel_length_compression
|
|
mel_codes = F.pad(mel_codes[:, :max_mel_len], (0,1), value=self.stop_mel_token)
|
|
if raw_mels is not None:
|
|
raw_mels = raw_mels[:, :, :max_mel_len*4]
|
|
mel_codes = self.set_mel_padding(mel_codes, wav_lengths)
|
|
|
|
if self.shuffle_conditioning:
|
|
speech_conditioning_input = self.randomly_permute_conditioning_input(speech_conditioning_input)
|
|
speech_conditioning_input = self.conditioning_encoder(speech_conditioning_input).unsqueeze(1)
|
|
|
|
text_inputs, text_targets = self.build_aligned_inputs_and_targets(text_inputs, self.start_text_token, self.stop_text_token)
|
|
text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding(torch.arange(text_inputs.shape[1], device=text_inputs.device))
|
|
mel_codes, mel_targets = self.build_aligned_inputs_and_targets(mel_codes, self.start_mel_token, self.stop_mel_token)
|
|
if raw_mels is not None:
|
|
mel_inp = F.pad(raw_mels, (0, 8))
|
|
else:
|
|
mel_inp = mel_codes
|
|
mel_emb = self.gpt.get_input_embeddings()(mel_inp)
|
|
mel_emb = mel_emb + self.mel_pos_embedding(torch.arange(mel_emb.shape[1], device=mel_emb.device))
|
|
if text_first:
|
|
text_logits, mel_logits = self.get_logits(speech_conditioning_input, text_emb, self.text_head, mel_emb, self.mel_head, get_attns=return_attentions)
|
|
else:
|
|
mel_logits, text_logits = self.get_logits(speech_conditioning_input, mel_emb, self.mel_head, text_emb, self.text_head, get_attns=return_attentions)
|
|
|
|
if return_attentions:
|
|
return mel_logits
|
|
loss_text = F.cross_entropy(text_logits, text_targets.long())
|
|
loss_mel = F.cross_entropy(mel_logits, mel_targets.long())
|
|
return loss_text.mean(), loss_mel.mean(), mel_logits
|
|
|
|
def text_forward(self, speech_conditioning_input, text_inputs, text_lengths):
|
|
"""
|
|
Performs autoregressive modeling on only text. Still requires a speech_conditioning_input due to the way the
|
|
model inputs are formatted. Just provide any audio clip (arguably, zeros could be provided).
|
|
"""
|
|
assert self.max_text_tokens >= text_inputs.shape[1], f'{text_inputs.shape[1]}'
|
|
|
|
# This model will receive micro-batches with a ton of padding for both the text and MELs. Ameliorate this by
|
|
# chopping the inputs by the maximum actual length.
|
|
max_text_len = text_lengths.max()
|
|
text_inputs = F.pad(text_inputs[:, :max_text_len], (0,1), value=self.stop_text_token)
|
|
|
|
if self.shuffle_conditioning:
|
|
speech_conditioning_input = self.randomly_permute_conditioning_input(speech_conditioning_input)
|
|
speech_conditioning_input = self.conditioning_encoder(speech_conditioning_input).unsqueeze(1)
|
|
|
|
text_inputs, text_targets = self.build_aligned_inputs_and_targets(text_inputs, self.start_text_token, self.stop_text_token)
|
|
text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding(torch.arange(text_inputs.shape[1], device=text_inputs.device)) + self.text_solo_embedding
|
|
text_logits = self.get_logits(speech_conditioning_input, text_emb, self.text_head)
|
|
loss_text = F.cross_entropy(text_logits, text_targets.long())
|
|
return loss_text.mean()
|
|
|
|
def speech_forward(self, speech_conditioning_input, mel_codes, wav_lengths, raw_mels=None):
|
|
"""
|
|
Performs autoregressive modeling on only speech data.
|
|
"""
|
|
assert self.max_mel_tokens >= mel_codes.shape[1], f'{mel_codes.shape[1]}'
|
|
|
|
# This model will receive micro-batches with a ton of padding for both the text and MELs. Ameliorate this by
|
|
# chopping the inputs by the maximum actual length.
|
|
max_mel_len = wav_lengths.max() // self.mel_length_compression
|
|
mel_codes = F.pad(mel_codes[:, :max_mel_len], (0,1), value=self.stop_mel_token)
|
|
mel_codes = self.set_mel_padding(mel_codes, wav_lengths)
|
|
if raw_mels is not None:
|
|
raw_mels = raw_mels[:, :, :max_mel_len*4]
|
|
|
|
if self.shuffle_conditioning:
|
|
speech_conditioning_input = self.randomly_permute_conditioning_input(speech_conditioning_input)
|
|
speech_conditioning_input = self.conditioning_encoder(speech_conditioning_input).unsqueeze(1)
|
|
|
|
mel_codes, mel_targets = self.build_aligned_inputs_and_targets(mel_codes, self.start_mel_token, self.stop_mel_token)
|
|
if raw_mels is not None:
|
|
mel_inp = F.pad(raw_mels, (0, 4))
|
|
else:
|
|
mel_inp = mel_codes
|
|
mel_emb = self.gpt.get_input_embeddings()(mel_inp)
|
|
mel_emb = mel_emb + self.mel_pos_embedding(torch.arange(mel_emb.shape[1], device=mel_emb.device)) + self.mel_solo_embedding
|
|
mel_logits = self.get_logits(speech_conditioning_input, mel_emb, self.mel_head)
|
|
loss_mel = F.cross_entropy(mel_logits, mel_targets.long())
|
|
return loss_mel.mean()
|
|
|
|
def inference_speech(self, speech_conditioning_input, text_inputs, **hf_generate_kwargs):
|
|
if not hasattr(self, 'inference_model'):
|
|
self.inference_model = GPT2InferenceModel(self.gpt_config, self.gpt, self.mel_pos_embedding, self.final_norm, self.mel_head)
|
|
|
|
text_inputs = F.pad(text_inputs, (0, 1), value=self.stop_text_token)
|
|
text_inputs, text_targets = self.build_aligned_inputs_and_targets(text_inputs, self.start_text_token, self.stop_text_token)
|
|
text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding(torch.arange(text_inputs.shape[1], device=text_inputs.device))
|
|
|
|
if self.shuffle_conditioning:
|
|
# Randomly permute the conditioning spectrogram, to destroy any structure present.
|
|
speech_conditioning_input = self.randomly_permute_conditioning_input(speech_conditioning_input)
|
|
cond = self.conditioning_encoder(speech_conditioning_input).unsqueeze(1)
|
|
|
|
emb = torch.cat([cond, text_emb], dim=1)
|
|
self.inference_model.store_mel_emb(emb)
|
|
|
|
fake_inputs = torch.full((emb.shape[0], emb.shape[1]+1,), fill_value=1, dtype=torch.long, device=text_inputs.device)
|
|
fake_inputs[:,-1] = self.start_mel_token
|
|
|
|
gen = self.inference_model.generate(fake_inputs, bos_token_id=self.start_mel_token, pad_token_id=self.stop_mel_token, eos_token_id=self.stop_mel_token,
|
|
max_length=self.gpt_config.n_positions, **hf_generate_kwargs)
|
|
return gen[:, fake_inputs.shape[1]:]
|
|
|
|
|
|
@register_model
|
|
def register_unified_gpt_voice(opt_net, opt):
|
|
return UnifiedGptVoice(**opt_get(opt_net, ['kwargs'], {}))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
gpt = UnifiedGptVoice(model_dim=256, heads=4, train_solo_embeddings=True, use_mel_codes_as_input=True)
|
|
l = gpt(torch.randn(2, 80, 800),
|
|
torch.randint(high=len(symbols), size=(2,80)),
|
|
torch.tensor([32, 80]),
|
|
torch.randint(high=8192, size=(2,250)),
|
|
torch.tensor([150*256,195*256]))
|
|
gpt.text_forward(torch.randn(2,80,800), torch.randint(high=50, size=(2,80)), torch.tensor([32, 80]))
|