77 lines
3.1 KiB
Python
77 lines
3.1 KiB
Python
import re
|
|
|
|
import datasets
|
|
from tokenizers import Tokenizer
|
|
from tokenizers.models import BPE
|
|
from tokenizers.pre_tokenizers import Whitespace
|
|
from tokenizers.processors import ByteLevel
|
|
from tokenizers.trainers import BpeTrainer
|
|
|
|
from data.audio.paired_voice_audio_dataset import load_mozilla_cv, load_voxpopuli, load_tsv
|
|
from models.tacotron2.taco_utils import load_filepaths_and_text
|
|
|
|
|
|
def build_text_file_from_priors(priors, output):
|
|
with open(output, 'w', encoding='utf-8') as out:
|
|
for p, fm in priors:
|
|
if fm == 'lj' or fm == 'libritts':
|
|
fetcher_fn = load_filepaths_and_text
|
|
elif fm == 'tsv':
|
|
fetcher_fn = load_tsv
|
|
elif fm == 'mozilla_cv':
|
|
fetcher_fn = load_mozilla_cv
|
|
elif fm == 'voxpopuli':
|
|
fetcher_fn = load_voxpopuli
|
|
else:
|
|
raise NotImplementedError()
|
|
apt = fetcher_fn(p)
|
|
for path, text in apt:
|
|
out.write(text + "\n")
|
|
out.flush()
|
|
|
|
|
|
def train():
|
|
with open('all_texts.txt', 'r', encoding='utf-8') as at:
|
|
ttsd = at.readlines()
|
|
bcd = datasets.load_dataset('bookcorpus', cache_dir='Z:\\huggingface_datasets\\cache')['train']
|
|
|
|
allowed_characters_re = re.compile(r'^[0-9a-z!@#%_=:;"/, \-\$\^&\*\(\)\+\{\[\]\}\\\.\'\?—–ʼ]+$')
|
|
def preprocess_word(word, report=False):
|
|
word = word.strip().lower()
|
|
if not bool(allowed_characters_re.match(word)):
|
|
if report and word:
|
|
print(f"REPORTING: '{word}'")
|
|
return ''
|
|
return word
|
|
|
|
def batch_iterator(batch_size=1000):
|
|
print("Processing ASR texts.")
|
|
for i in range(0, len(ttsd), batch_size):
|
|
yield [preprocess_word(t, True) for t in ttsd[i:i+batch_size]]
|
|
|
|
print("Processing bookcorpus.")
|
|
for i in range(0, len(bcd), batch_size):
|
|
yield [preprocess_word(t) for t in bcd[i:i+batch_size]['text']]
|
|
|
|
trainer = BpeTrainer(special_tokens=['[STOP]', '[UNK]'], vocab_size=9999, continuing_subword_prefix='$$$')
|
|
tokenizer = Tokenizer(BPE(unk_token="[UNK]"))
|
|
tokenizer.pre_tokenizer = Whitespace()
|
|
tokenizer.train_from_iterator(batch_iterator(), trainer, length=len(ttsd)+len(bcd))
|
|
|
|
print(tokenizer.decode(tokenizer.encode("i was traveling throughhadslfghds the woods in 1235375t137{{}}").ids))
|
|
|
|
tokenizer.save('gpt_tts_tokenizer.json')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
'''
|
|
build_text_file_from_priors([('Y:\\bigasr_dataset\\libritts\\train-all.txt', 'libritts'),
|
|
('Y:\\bigasr_dataset\\libritts\\test-clean_list.txt', 'libritts'),
|
|
#('Y:\\bigasr_dataset\\voxpopuli\\audio\\transcribed_data\\en\\asr_en.tsv', 'voxpopuli'),
|
|
('Y:\\bigasr_dataset\\voxpopuli\\audio\\transcribed_data\\en\\asr_train.tsv', 'voxpopuli'),
|
|
('Y:\\clips\\books1-transcribed.tsv', 'tsv'),
|
|
('Y:\\clips\\books2-transcribed.tsv', 'tsv'),
|
|
('Y:\\clips\\podcasts-0-transcribed.tsv', 'tsv')], 'all_texts.txt')
|
|
'''
|
|
train()
|