DL-Art-School/codes/data/REDS_dataset.py
XintaoWang 037933ba66 mmsr
2019-08-23 21:42:47 +08:00

211 lines
8.9 KiB
Python

'''
REDS dataset
support reading images from lmdb, image folder and memcached
'''
import os.path as osp
import random
import pickle
import logging
import numpy as np
import cv2
import lmdb
import torch
import torch.utils.data as data
import data.util as util
try:
import mc # import memcached
except ImportError:
pass
logger = logging.getLogger('base')
class REDSDataset(data.Dataset):
'''
Reading the training REDS dataset
key example: 000_00000000
GT: Ground-Truth;
LQ: Low-Quality, e.g., low-resolution/blurry/noisy/compressed frames
support reading N LQ frames, N = 1, 3, 5, 7
'''
def __init__(self, opt):
super(REDSDataset, self).__init__()
self.opt = opt
# temporal augmentation
self.interval_list = opt['interval_list']
self.random_reverse = opt['random_reverse']
logger.info('Temporal augmentation interval list: [{}], with random reverse is {}.'.format(
','.join(str(x) for x in opt['interval_list']), self.random_reverse))
self.half_N_frames = opt['N_frames'] // 2
self.GT_root, self.LQ_root = opt['dataroot_GT'], opt['dataroot_LQ']
self.data_type = self.opt['data_type']
self.LR_input = False if opt['GT_size'] == opt['LQ_size'] else True # low resolution inputs
#### directly load image keys
if self.data_type == 'lmdb':
self.paths_GT, _ = util.get_image_paths(self.data_type, opt['dataroot_GT'])
logger.info('Using lmdb meta info for cache keys.')
elif opt['cache_keys']:
logger.info('Using cache keys: {}'.format(opt['cache_keys']))
self.paths_GT = pickle.load(open(opt['cache_keys'], 'rb'))['keys']
else:
raise ValueError(
'Need to create cache keys (meta_info.pkl) by running [create_lmdb.py]')
# remove the REDS4 for testing
self.paths_GT = [
v for v in self.paths_GT if v.split('_')[0] not in ['000', '011', '015', '020']
]
assert self.paths_GT, 'Error: GT path is empty.'
if self.data_type == 'lmdb':
self.GT_env, self.LQ_env = None, None
elif self.data_type == 'mc': # memcached
self.mclient = None
elif self.data_type == 'img':
pass
else:
raise ValueError('Wrong data type: {}'.format(self.data_type))
def _init_lmdb(self):
# https://github.com/chainer/chainermn/issues/129
self.GT_env = lmdb.open(self.opt['dataroot_GT'], readonly=True, lock=False, readahead=False,
meminit=False)
self.LQ_env = lmdb.open(self.opt['dataroot_LQ'], readonly=True, lock=False, readahead=False,
meminit=False)
def _ensure_memcached(self):
if self.mclient is None:
# specify the config files
server_list_config_file = None
client_config_file = None
self.mclient = mc.MemcachedClient.GetInstance(server_list_config_file,
client_config_file)
def _read_img_mc(self, path):
''' Return BGR, HWC, [0, 255], uint8'''
value = mc.pyvector()
self.mclient.Get(path, value)
value_buf = mc.ConvertBuffer(value)
img_array = np.frombuffer(value_buf, np.uint8)
img = cv2.imdecode(img_array, cv2.IMREAD_UNCHANGED)
return img
def _read_img_mc_BGR(self, path, name_a, name_b):
''' Read BGR channels separately and then combine for 1M limits in cluster'''
img_B = self._read_img_mc(osp.join(path + '_B', name_a, name_b + '.png'))
img_G = self._read_img_mc(osp.join(path + '_G', name_a, name_b + '.png'))
img_R = self._read_img_mc(osp.join(path + '_R', name_a, name_b + '.png'))
img = cv2.merge((img_B, img_G, img_R))
return img
def __getitem__(self, index):
if self.data_type == 'mc':
self._ensure_memcached()
elif self.data_type == 'lmdb' and (self.GT_env is None or self.LQ_env is None):
self._init_lmdb()
scale = self.opt['scale']
GT_size = self.opt['GT_size']
key = self.paths_GT[index]
name_a, name_b = key.split('_')
center_frame_idx = int(name_b)
#### determine the neighbor frames
interval = random.choice(self.interval_list)
if self.opt['border_mode']:
direction = 1 # 1: forward; 0: backward
N_frames = self.opt['N_frames']
if self.random_reverse and random.random() < 0.5:
direction = random.choice([0, 1])
if center_frame_idx + interval * (N_frames - 1) > 99:
direction = 0
elif center_frame_idx - interval * (N_frames - 1) < 0:
direction = 1
# get the neighbor list
if direction == 1:
neighbor_list = list(
range(center_frame_idx, center_frame_idx + interval * N_frames, interval))
else:
neighbor_list = list(
range(center_frame_idx, center_frame_idx - interval * N_frames, -interval))
name_b = '{:08d}'.format(neighbor_list[0])
else:
# ensure not exceeding the borders
while (center_frame_idx + self.half_N_frames * interval >
99) or (center_frame_idx - self.half_N_frames * interval < 0):
center_frame_idx = random.randint(0, 99)
# get the neighbor list
neighbor_list = list(
range(center_frame_idx - self.half_N_frames * interval,
center_frame_idx + self.half_N_frames * interval + 1, interval))
if self.random_reverse and random.random() < 0.5:
neighbor_list.reverse()
name_b = '{:08d}'.format(neighbor_list[self.half_N_frames])
assert len(
neighbor_list) == self.opt['N_frames'], 'Wrong length of neighbor list: {}'.format(
len(neighbor_list))
#### get the GT image (as the center frame)
if self.data_type == 'mc':
img_GT = self._read_img_mc_BGR(self.GT_root, name_a, name_b)
img_GT = img_GT.astype(np.float32) / 255.
elif self.data_type == 'lmdb':
img_GT = util.read_img(self.GT_env, key, (3, 720, 1280))
else:
img_GT = util.read_img(None, osp.join(self.GT_root, name_a, name_b + '.png'))
#### get LQ images
LQ_size_tuple = (3, 180, 320) if self.LR_input else (3, 720, 1280)
img_LQ_l = []
for v in neighbor_list:
img_LQ_path = osp.join(self.LQ_root, name_a, '{:08d}.png'.format(v))
if self.data_type == 'mc':
if self.LR_input:
img_LQ = self._read_img_mc(img_LQ_path)
else:
img_LQ = self._read_img_mc_BGR(self.LQ_root, name_a, '{:08d}'.format(v))
img_LQ = img_LQ.astype(np.float32) / 255.
elif self.data_type == 'lmdb':
img_LQ = util.read_img(self.LQ_env, '{}_{:08d}'.format(name_a, v), LQ_size_tuple)
else:
img_LQ = util.read_img(None, img_LQ_path)
img_LQ_l.append(img_LQ)
if self.opt['phase'] == 'train':
C, H, W = LQ_size_tuple # LQ size
# randomly crop
if self.LR_input:
LQ_size = GT_size // scale
rnd_h = random.randint(0, max(0, H - LQ_size))
rnd_w = random.randint(0, max(0, W - LQ_size))
img_LQ_l = [v[rnd_h:rnd_h + LQ_size, rnd_w:rnd_w + LQ_size, :] for v in img_LQ_l]
rnd_h_HR, rnd_w_HR = int(rnd_h * scale), int(rnd_w * scale)
img_GT = img_GT[rnd_h_HR:rnd_h_HR + GT_size, rnd_w_HR:rnd_w_HR + GT_size, :]
else:
rnd_h = random.randint(0, max(0, H - GT_size))
rnd_w = random.randint(0, max(0, W - GT_size))
img_LQ_l = [v[rnd_h:rnd_h + GT_size, rnd_w:rnd_w + GT_size, :] for v in img_LQ_l]
img_GT = img_GT[rnd_h:rnd_h + GT_size, rnd_w:rnd_w + GT_size, :]
# augmentation - flip, rotate
img_LQ_l.append(img_GT)
rlt = util.augment(img_LQ_l, self.opt['use_flip'], self.opt['use_rot'])
img_LQ_l = rlt[0:-1]
img_GT = rlt[-1]
# stack LQ images to NHWC, N is the frame number
img_LQs = np.stack(img_LQ_l, axis=0)
# BGR to RGB, HWC to CHW, numpy to tensor
img_GT = img_GT[:, :, [2, 1, 0]]
img_LQs = img_LQs[:, :, :, [2, 1, 0]]
img_GT = torch.from_numpy(np.ascontiguousarray(np.transpose(img_GT, (2, 0, 1)))).float()
img_LQs = torch.from_numpy(np.ascontiguousarray(np.transpose(img_LQs,
(0, 3, 1, 2)))).float()
return {'LQs': img_LQs, 'GT': img_GT, 'key': key}
def __len__(self):
return len(self.paths_GT)