177 lines
6.6 KiB
Python
177 lines
6.6 KiB
Python
import argparse
|
|
import functools
|
|
import torch
|
|
from utils import options as option
|
|
from trainer.networks import create_model
|
|
|
|
|
|
class TracedModule:
|
|
def __init__(self, idname):
|
|
self.idname = idname
|
|
self.traced_outputs = []
|
|
self.traced_inputs = []
|
|
|
|
|
|
class TorchCustomTrace:
|
|
def __init__(self):
|
|
self.module_name_counter = {}
|
|
self.modules = {}
|
|
self.graph = {}
|
|
self.module_map_by_inputs = {}
|
|
self.module_map_by_outputs = {}
|
|
self.inputs_to_func_output_tuple = {}
|
|
|
|
def add_tracked_module(self, mod: torch.nn.Module):
|
|
modname = type(mod).__name__
|
|
if modname not in self.module_name_counter.keys():
|
|
self.module_name_counter[modname] = 0
|
|
self.module_name_counter[modname] += 1
|
|
idname = "%s(%03d)" % (modname, self.module_name_counter[modname])
|
|
self.modules[idname] = TracedModule(idname)
|
|
return idname
|
|
|
|
# Only called for nn.Modules since those are the only things we can access. Filling in the gaps will be done in
|
|
# the backwards pass.
|
|
def mem_forward_hook(self, module: torch.nn.Module, inputs, outputs, trace: str, mod_id: str):
|
|
mod = self.modules[mod_id]
|
|
'''
|
|
for li in inputs:
|
|
if type(li) == torch.Tensor:
|
|
li = [li]
|
|
if type(li) == list:
|
|
for i in li:
|
|
if i.data_ptr() in self.module_map_by_inputs.keys():
|
|
self.module_map_by_inputs[i.data_ptr()].append(mod)
|
|
else:
|
|
self.module_map_by_inputs[i.data_ptr()] = [mod]
|
|
for o in outputs:
|
|
if o.data_ptr() in self.module_map_by_inputs.keys():
|
|
self.module_map_by_inputs[o.data_ptr()].append(mod)
|
|
else:
|
|
self.module_map_by_inputs[o.data_ptr()] = [mod]
|
|
'''
|
|
print(trace)
|
|
|
|
def mem_backward_hook(self, inputs, outputs, op):
|
|
if len(inputs) == 0:
|
|
print("No inputs.. %s" % (op,))
|
|
outs = [o.data_ptr() for o in outputs]
|
|
tup = (outs, op)
|
|
#print(tup)
|
|
for li in inputs:
|
|
if type(li) == torch.Tensor:
|
|
li = [li]
|
|
if type(li) == list:
|
|
for i in li:
|
|
if i.data_ptr() in self.module_map_by_inputs.keys():
|
|
print("%i: [%s] {%s}" % (i.data_ptr(), op, [n.idname for n in self.module_map_by_inputs[i.data_ptr()]]))
|
|
if i.data_ptr() in self.inputs_to_func_output_tuple.keys():
|
|
self.inputs_to_func_output_tuple[i.data_ptr()].append(tup)
|
|
else:
|
|
self.inputs_to_func_output_tuple[i.data_ptr()] = [tup]
|
|
|
|
def install_hooks(self, mod: torch.nn.Module, trace=""):
|
|
mod_id = self.add_tracked_module(mod)
|
|
my_trace = trace + "->" + mod_id
|
|
# If this module has parameters, it also has a state worth tracking.
|
|
#if next(mod.parameters(recurse=False), None) is not None:
|
|
mod.register_forward_hook(functools.partial(self.mem_forward_hook, trace=my_trace, mod_id=mod_id))
|
|
|
|
for m in mod.children():
|
|
self.install_hooks(m, my_trace)
|
|
|
|
def install_backward_hooks(self, grad_fn):
|
|
# AccumulateGrad simply pushes a gradient into the specified variable, and isn't useful for the purposes of
|
|
# tracing the graph.
|
|
if grad_fn is None or "AccumulateGrad" in str(grad_fn):
|
|
return
|
|
grad_fn.register_hook(functools.partial(self.mem_backward_hook, op=str(grad_fn)))
|
|
for g, _ in grad_fn.next_functions:
|
|
self.install_backward_hooks(g)
|
|
|
|
if __name__ == "__main__":
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('-opt', type=str, help='Path to options YAML file.', default='../../options/train_div2k_pixgan_srg2.yml')
|
|
opt = option.parse(parser.parse_args().opt, is_train=False)
|
|
opt = option.dict_to_nonedict(opt)
|
|
|
|
netG = create_model(opt)
|
|
dummyInput = torch.rand(1,3,32,32)
|
|
|
|
mode = 'onnx'
|
|
if mode == 'torchscript':
|
|
print("Tracing generator network..")
|
|
traced_netG = torch.jit.trace(netG, dummyInput)
|
|
traced_netG.save('../results/ts_generator.zip')
|
|
|
|
print(traced_netG.code)
|
|
for i, module in enumerate(traced_netG.RRDB_trunk.modules()):
|
|
print(i, str(module))
|
|
elif mode == 'onnx':
|
|
print("Performing onnx trace")
|
|
input_names = ["lr_input"]
|
|
output_names = ["hr_image"]
|
|
dynamic_axes = {'lr_input': {0: 'batch', 1: 'filters', 2: 'h', 3: 'w'}, 'hr_image': {0: 'batch', 1: 'filters', 2: 'h', 3: 'w'}}
|
|
|
|
torch.onnx.export(netG, dummyInput, "../results/gen.onnx", verbose=True, input_names=input_names,
|
|
output_names=output_names, dynamic_axes=dynamic_axes, opset_version=12)
|
|
elif mode == 'memtrace':
|
|
criterion = torch.nn.MSELoss()
|
|
tracer = TorchCustomTrace()
|
|
tracer.install_hooks(netG)
|
|
out, = netG(dummyInput)
|
|
tracer.install_backward_hooks(out.grad_fn)
|
|
target = torch.zeros_like(out)
|
|
loss = criterion(out, target)
|
|
loss.backward()
|
|
elif mode == 'trace':
|
|
out = netG.forward(dummyInput)[0]
|
|
print(out.shape)
|
|
# Build the graph backwards.
|
|
graph = build_graph(out, 'output')
|
|
|
|
def get_unique_id_for_fn(fn):
|
|
return (str(fn).split(" object at ")[1])[:-1]
|
|
|
|
class GraphNode:
|
|
def __init__(self, fn):
|
|
self.name = (str(fn).split(" object at ")[0])[1:]
|
|
self.fn = fn
|
|
self.children = {}
|
|
self.parents = {}
|
|
|
|
def add_parent(self, parent):
|
|
self.parents[get_unique_id_for_fn(parent)] = parent
|
|
|
|
def add_child(self, child):
|
|
self.children[get_unique_id_for_fn(child)] = child
|
|
|
|
class TorchGraph:
|
|
def __init__(self):
|
|
self.tensor_map = {}
|
|
|
|
def get_node_for_tensor(self, t):
|
|
return self.tensor_map[get_unique_id_for_fn(t)]
|
|
|
|
def init(self, output_tensor):
|
|
self.build_graph_backwards(output_tensor.grad_fn, None)
|
|
# Find inputs
|
|
self.inputs = []
|
|
for v in self.tensor_map.values():
|
|
# Is an input if the parents dict is empty.
|
|
if bool(v.parents):
|
|
self.inputs.append(v)
|
|
|
|
def build_graph_backwards(self, fn, previous_fn):
|
|
id = get_unique_id_for_fn(fn)
|
|
if id in self.tensor_map:
|
|
node = self.tensor_map[id]
|
|
node.add_child(previous_fn)
|
|
else:
|
|
node = GraphNode(fn)
|
|
self.tensor_map[id] = node
|
|
# Propagate to children
|
|
for child_fn in fn.next_functions:
|
|
node.add_parent(self.build_graph_backwards(child_fn, fn))
|
|
return node |