DL-Art-School/codes/models/gpt_voice/mini_encoder.py
2021-09-16 22:43:10 -06:00

123 lines
4.2 KiB
Python

import torch
import torch.nn as nn
from models.diffusion.nn import normalization, conv_nd, zero_module
from models.diffusion.unet_diffusion import Downsample, AttentionBlock, QKVAttention, QKVAttentionLegacy
from models.gpt_voice.my_dvae import ResBlock
# Combined resnet & full-attention encoder for converting an audio clip into an embedding.
from utils.util import checkpoint
class AudioMiniEncoder(nn.Module):
def __init__(self, spec_dim, embedding_dim, resnet_blocks=2, attn_blocks=4, num_attn_heads=4, dropout=0):
super().__init__()
self.init = nn.Sequential(
conv_nd(1, spec_dim, 128, 3, padding=1)
)
ch = 128
res = []
for l in range(2):
for r in range(resnet_blocks):
res.append(ResBlock(ch, dropout, dims=1))
res.append(Downsample(ch, use_conv=True, dims=1, out_channels=ch*2, factor=2))
ch *= 2
self.res = nn.Sequential(*res)
self.final = nn.Sequential(
normalization(ch),
nn.SiLU(),
conv_nd(1, ch, embedding_dim, 1)
)
attn = []
for a in range(attn_blocks):
attn.append(AttentionBlock(embedding_dim, num_attn_heads))
self.attn = nn.Sequential(*attn)
def forward(self, x):
h = self.init(x)
h = self.res(h)
h = self.final(h)
h = self.attn(h)
return h[:, :, 0]
class QueryProvidedAttentionBlock(nn.Module):
"""
An attention block that provides a separate signal for the query vs the keys/parameters.
"""
def __init__(
self,
channels,
num_heads=1,
num_head_channels=-1,
use_new_attention_order=False,
):
super().__init__()
self.channels = channels
if num_head_channels == -1:
self.num_heads = num_heads
else:
assert (
channels % num_head_channels == 0
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
self.num_heads = channels // num_head_channels
self.norm = normalization(channels)
self.q = nn.Linear(channels, channels)
self.qnorm = nn.LayerNorm(channels)
self.kv = conv_nd(1, channels, channels*2, 1)
if use_new_attention_order:
# split qkv before split heads
self.attention = QKVAttention(self.num_heads)
else:
# split heads before split qkv
self.attention = QKVAttentionLegacy(self.num_heads)
self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
def forward(self, qx, kvx, mask=None):
return checkpoint(self._forward, qx, kvx, mask)
def _forward(self, qx, kvx, mask=None):
q = self.q(self.qnorm(qx)).unsqueeze(1).repeat(1, kvx.shape[1], 1).permute(0,2,1)
kv = self.kv(self.norm(kvx.permute(0,2,1)))
qkv = torch.cat([q, kv], dim=1)
h = self.attention(qkv, mask)
h = self.proj_out(h)
return kvx + h.permute(0,2,1)
# Next up: combine multiple embeddings given a conditioning signal into a single embedding.
class EmbeddingCombiner(nn.Module):
def __init__(self, embedding_dim, attn_blocks=3, num_attn_heads=2, cond_provided=True):
super().__init__()
block = QueryProvidedAttentionBlock if cond_provided else AttentionBlock
self.attn = nn.ModuleList([block(embedding_dim, num_attn_heads) for _ in range(attn_blocks)])
self.cond_provided = cond_provided
# x_s: (b,n,d); b=batch_sz, n=number of embeddings, d=embedding_dim
# cond: (b,d) or None
def forward(self, x_s, attn_mask=None, cond=None):
assert cond is not None and self.cond_provided or cond is None and not self.cond_provided
y = x_s
for blk in self.attn:
if self.cond_provided:
y = blk(cond, y, mask=attn_mask)
else:
y = blk(y, mask=attn_mask)
return y[:, 0]
if __name__ == '__main__':
x = torch.randn(2, 80, 223)
cond = torch.randn(2, 512)
encs = [AudioMiniEncoder(80, 512) for _ in range(5)]
combiner = EmbeddingCombiner(512)
e = torch.stack([e(x) for e in encs], dim=2)
print(combiner(e, cond).shape)