DL-Art-School/codes/models/segformer/segformer.py
2021-06-07 15:36:07 -06:00

131 lines
4.7 KiB
Python

import math
import torch
import torch.nn as nn
import torchvision
from tqdm import tqdm
from models.segformer.backbone import backbone50
from trainer.networks import register_model
# torch.gather() which operates as it always fucking should have: pulling indexes from the input.
def gather_2d(input, index):
b, c, h, w = input.shape
nodim = input.view(b, c, h * w)
ind_nd = index[:, 0]*w + index[:, 1]
ind_nd = ind_nd.unsqueeze(1)
ind_nd = ind_nd.repeat((1, c))
ind_nd = ind_nd.unsqueeze(2)
result = torch.gather(nodim, dim=2, index=ind_nd)
result = result.squeeze()
if b == 1:
result = result.unsqueeze(0)
return result
class DilatorModule(nn.Module):
def __init__(self, input_channels, output_channels, max_dilation):
super().__init__()
self.max_dilation = max_dilation
self.conv1 = nn.Conv2d(input_channels, input_channels, kernel_size=3, padding=1, dilation=1, bias=True)
if max_dilation > 1:
self.bn = nn.BatchNorm2d(input_channels)
self.relu = nn.ReLU()
self.conv2 = nn.Conv2d(input_channels, input_channels, kernel_size=3, padding=max_dilation, dilation=max_dilation, bias=True)
self.dense = nn.Linear(input_channels, output_channels, bias=True)
def forward(self, inp, loc):
x = self.conv1(inp)
if self.max_dilation > 1:
x = self.bn(self.relu(x))
x = self.conv2(x)
# This can be made more efficient by only computing these convolutions across a subset of the image. Possibly.
x = gather_2d(x, loc).contiguous()
return self.dense(x)
# Grabbed from torch examples: https://github.com/pytorch/examples/tree/master/https://github.com/pytorch/examples/blob/master/word_language_model/model.py#L65:7
class PositionalEncoding(nn.Module):
def __init__(self, d_model, max_len=5000):
super(PositionalEncoding, self).__init__()
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:x.size(0), :]
return x
# Simple mean() layer encoded into a class so that BYOL can grab it.
class Tail(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return x.mean(dim=0)
class Segformer(nn.Module):
def __init__(self, latent_channels=1024, layers=8):
super().__init__()
self.backbone = backbone50()
backbone_channels = [256, 512, 1024, 2048]
dilations = [[1,2,3,4],[1,2,3],[1,2],[1]]
final_latent_channels = latent_channels
dilators = []
for ic, dis in zip(backbone_channels, dilations):
layer_dilators = []
for di in dis:
layer_dilators.append(DilatorModule(ic, final_latent_channels, di))
dilators.append(nn.ModuleList(layer_dilators))
self.dilators = nn.ModuleList(dilators)
self.token_position_encoder = PositionalEncoding(final_latent_channels, max_len=10)
self.transformer_layers = nn.Sequential(*[nn.TransformerEncoderLayer(final_latent_channels, nhead=4) for _ in range(layers)])
self.tail = Tail()
def forward(self, img=None, layers=None, pos=None, return_layers=False):
assert img is not None or layers is not None
if img is not None:
bs = img.shape[0]
layers = self.backbone(img)
else:
bs = layers[0].shape[0]
if return_layers:
return layers
# A single position can be optionally given, in which case we need to expand it to represent the entire input.
if pos.shape == (2,):
pos = pos.unsqueeze(0).repeat(bs, 1)
set = []
pos = pos // 4
for layer_out, dilator in zip(layers, self.dilators):
for subdilator in dilator:
set.append(subdilator(layer_out, pos))
pos = pos // 2
# The torch transformer expects the set dimension to be 0.
set = torch.stack(set, dim=0)
set = self.token_position_encoder(set)
set = self.transformer_layers(set)
return self.tail(set)
@register_model
def register_segformer(opt_net, opt):
return Segformer()
if __name__ == '__main__':
model = Segformer().to('cuda')
for j in tqdm(range(1000)):
test_tensor = torch.randn(64,3,224,224).cuda()
print(model(img=test_tensor, pos=torch.randint(0,224,(64,2)).cuda()).shape)