DL-Art-School/codes/models/switched_conv/switched_conv.py
2021-02-02 20:41:24 -07:00

136 lines
5.4 KiB
Python

import functools
import math
from collections import OrderedDict
import torch
import torch.nn as nn
from lambda_networks import LambdaLayer
from torch.nn import init, Conv2d
import torch.nn.functional as F
class SwitchedConv(nn.Module):
def __init__(self,
in_channels: int,
out_channels: int,
kernel_size: int,
switch_breadth: int,
stride: int = 1,
padding: int = 0,
dilation: int = 1,
groups: int = 1,
bias: bool = True,
padding_mode: str = 'zeros',
include_coupler: bool = False, # A 'coupler' is a latent converter which can make any bxcxhxw tensor a compatible switchedconv selector by performing a linear 1x1 conv, softmax and interpolate.
coupler_mode: str = 'standard',
coupler_dim_in: int = 0):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.dilation = dilation
self.padding_mode = padding_mode
self.groups = groups
if include_coupler:
if coupler_mode == 'standard':
self.coupler = Conv2d(coupler_dim_in, switch_breadth, kernel_size=1)
elif coupler_mode == 'lambda':
self.coupler = LambdaLayer(dim=coupler_dim_in, dim_out=switch_breadth, r=23, dim_k=16, heads=2, dim_u=1)
else:
self.coupler = None
self.weights = nn.ParameterList([nn.Parameter(torch.Tensor(out_channels, in_channels // groups, kernel_size, kernel_size)) for _ in range(switch_breadth)])
if bias:
self.bias = nn.Parameter(torch.Tensor(out_channels))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self) -> None:
for w in self.weights:
init.kaiming_uniform_(w, a=math.sqrt(5))
if self.bias is not None:
fan_in, _ = init._calculate_fan_in_and_fan_out(self.weights[0])
bound = 1 / math.sqrt(fan_in)
init.uniform_(self.bias, -bound, bound)
def forward(self, inp, selector=None):
if self.coupler:
if selector is None: # A coupler can convert from any input to a selector, so 'None' is allowed.
selector = inp
selector = F.softmax(self.coupler(selector), dim=1)
self.last_select = selector.detach().clone()
out_shape = [s // self.stride for s in inp.shape[2:]]
if selector.shape[2] != out_shape[0] or selector.shape[3] != out_shape[1]:
selector = F.interpolate(selector, size=out_shape, mode="nearest")
assert selector is not None
conv_results = []
for i, w in enumerate(self.weights):
conv_results.append(F.conv2d(inp, w, self.bias, self.stride, self.padding, self.dilation, self.groups) * selector[:, i].unsqueeze(1))
return torch.stack(conv_results, dim=-1).sum(dim=-1)
# Given a state_dict and the module that that sd belongs to, strips out all Conv2d.weight parameters and replaces them
# with the equivalent SwitchedConv.weight parameters. Does not create coupler params.
def convert_conv_net_state_dict_to_switched_conv(module, switch_breadth, ignore_list=[]):
state_dict = module.state_dict()
for name, m in module.named_modules():
ignored = False
for smod in ignore_list:
if smod in name:
ignored = True
continue
if ignored:
continue
if isinstance(m, nn.Conv2d):
if name == '':
basename = 'weight'
modname = 'weights'
else:
basename = f'{name}.weight'
modname = f'{name}.weights'
cnv_weights = state_dict[basename]
del state_dict[basename]
for j in range(switch_breadth):
state_dict[f'{modname}.{j}'] = cnv_weights.clone()
return state_dict
def test_net():
base_conv = Conv2d(32, 64, 3, stride=2, padding=1, bias=True).to('cuda')
mod_conv = SwitchedConv(32, 64, 3, switch_breadth=8, stride=2, padding=1, bias=True, include_coupler=True, coupler_dim_in=128).to('cuda')
mod_sd = convert_conv_net_state_dict_to_switched_conv(base_conv, 8)
mod_conv.load_state_dict(mod_sd, strict=False)
inp = torch.randn((8,32,128,128), device='cuda')
sel = torch.randn((8,128,32,32), device='cuda')
out1 = base_conv(inp)
out2 = mod_conv(inp, sel)
assert(torch.max(torch.abs(out1-out2)) < 1e-6)
def perform_conversion():
sd = torch.load("../experiments/rrdb_imgset_226500_generator.pth")
load_net_clean = OrderedDict() # remove unnecessary 'module.'
for k, v in sd.items():
if k.startswith('module.'):
load_net_clean[k.replace('module.', '')] = v
else:
load_net_clean[k] = v
sd = load_net_clean
import models.RRDBNet_arch as rrdb
block = functools.partial(rrdb.RRDBWithBypass)
mod = rrdb.RRDBNet(in_channels=3, out_channels=3,
mid_channels=64, num_blocks=23, body_block=block, scale=2, initial_stride=2)
mod.load_state_dict(sd)
converted = convert_conv_net_state_dict_to_switched_conv(mod, 8, ['body.','conv_first','resnet_encoder'])
torch.save(converted, "../experiments/rrdb_imgset_226500_generator_converted.pth")
if __name__ == '__main__':
perform_conversion()