DL-Art-School/dlas/models/audio/music/m2v_code_to_mel.py

64 lines
2.9 KiB
Python

import torch
import torch.nn as nn
import torch.nn.functional as F
from dlas.models.arch_util import AttentionBlock, ResBlock
from dlas.models.audio.music.flat_diffusion import MultiGroupEmbedding
from dlas.trainer.networks import register_model
from dlas.utils.util import checkpoint
class Code2Mel(nn.Module):
def __init__(self, out_dim=256, base_dim=1024, num_tokens=16, num_groups=4, dropout=.1):
super().__init__()
self.emb = MultiGroupEmbedding(num_tokens, num_groups, base_dim)
self.base_blocks = nn.Sequential(ResBlock(base_dim, dropout, dims=1),
AttentionBlock(
base_dim, num_heads=base_dim//64),
ResBlock(base_dim, dropout, dims=1))
l2dim = base_dim-256
self.l2_up_block = nn.Conv1d(base_dim, l2dim, kernel_size=5, padding=2)
self.l2_blocks = nn.Sequential(ResBlock(l2dim, dropout, kernel_size=5, dims=1),
AttentionBlock(
l2dim, num_heads=base_dim//64),
ResBlock(l2dim, dropout,
kernel_size=5, dims=1),
AttentionBlock(
l2dim, num_heads=base_dim//64),
ResBlock(l2dim, dropout, dims=1),
ResBlock(l2dim, dropout, dims=1))
l3dim = l2dim-256
self.l3_up_block = nn.Conv1d(l2dim, l3dim, kernel_size=5, padding=2)
self.l3_blocks = nn.Sequential(ResBlock(l3dim, dropout, kernel_size=5, dims=1),
AttentionBlock(
l3dim, num_heads=base_dim//64),
ResBlock(l3dim, dropout,
kernel_size=5, dims=1),
ResBlock(l3dim, dropout, dims=1))
self.final_block = nn.Conv1d(l3dim, out_dim, kernel_size=3, padding=1)
def forward(self, codes, target):
with torch.autocast(codes.device.type):
h = self.emb(codes).permute(0, 2, 1)
h = checkpoint(self.base_blocks, h)
h = F.interpolate(h, scale_factor=2, mode='linear')
h = self.l2_up_block(h)
h = checkpoint(self.l2_blocks, h)
h = F.interpolate(h, size=target.shape[-1], mode='linear')
h = self.l3_up_block(h)
h = checkpoint(self.l3_blocks, h.float())
pred = self.final_block(h)
return F.mse_loss(pred, target), pred
@register_model
def register_code2mel(opt_net, opt):
return Code2Mel(**opt_net['kwargs'])
if __name__ == '__main__':
model = Code2Mel()
codes = torch.randint(0, 16, (2, 200, 4))
target = torch.randn(2, 256, 804)
model(codes, target)