355 lines
16 KiB
Python
355 lines
16 KiB
Python
import itertools
|
|
from random import randrange
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
import dlas.torch_intermediary as ml
|
|
from dlas.models.arch_util import (AttentionBlock, RelativeQKBias, ResBlock,
|
|
TimestepEmbedSequential,
|
|
build_local_attention_mask, cGLU)
|
|
from dlas.models.diffusion.nn import (conv_nd, linear, normalization,
|
|
timestep_embedding, zero_module)
|
|
from dlas.models.diffusion.unet_diffusion import TimestepBlock
|
|
from dlas.trainer.networks import register_model
|
|
from dlas.utils.util import checkpoint
|
|
|
|
|
|
class SubBlock(nn.Module):
|
|
def __init__(self, inp_dim, contraction_dim, heads, dropout):
|
|
super().__init__()
|
|
self.dropout = nn.Dropout(p=dropout)
|
|
self.attn = AttentionBlock(
|
|
inp_dim, out_channels=contraction_dim, num_heads=heads)
|
|
self.register_buffer('mask', build_local_attention_mask(
|
|
n=6000, l=64), persistent=False)
|
|
self.pos_bias = RelativeQKBias(l=64, max_positions=6000)
|
|
ff_contract = contraction_dim//2
|
|
self.ff1 = nn.Sequential(nn.Conv1d(inp_dim+contraction_dim, ff_contract, kernel_size=1),
|
|
nn.GroupNorm(8, ff_contract),
|
|
cGLU(ff_contract))
|
|
self.ff2 = nn.Sequential(nn.Conv1d(inp_dim+contraction_dim*3//2, ff_contract, kernel_size=3, padding=1),
|
|
nn.GroupNorm(8, ff_contract),
|
|
cGLU(ff_contract))
|
|
|
|
def forward(self, x):
|
|
ah = self.dropout(self.attn(x, mask=self.mask,
|
|
qk_bias=self.pos_bias(x.shape[-1])))
|
|
h = torch.cat([ah, x], dim=1)
|
|
hf = self.dropout(checkpoint(self.ff1, h))
|
|
h = torch.cat([h, hf], dim=1)
|
|
hf = self.dropout(checkpoint(self.ff2, h))
|
|
return torch.cat([h, hf], dim=1)
|
|
|
|
|
|
class ConcatAttentionBlock(TimestepBlock):
|
|
def __init__(self, trunk_dim, contraction_dim, blk_dim, heads, dropout):
|
|
super().__init__()
|
|
self.contraction_dim = contraction_dim
|
|
self.prenorm = nn.GroupNorm(8, trunk_dim)
|
|
self.block1 = SubBlock(
|
|
trunk_dim+blk_dim, contraction_dim, heads, dropout)
|
|
self.block2 = SubBlock(
|
|
trunk_dim+blk_dim+contraction_dim*2, contraction_dim, heads, dropout)
|
|
self.out = nn.Conv1d(contraction_dim*4, trunk_dim,
|
|
kernel_size=1, bias=False)
|
|
self.out.weight.data.zero_()
|
|
|
|
def forward(self, x, blk_emb):
|
|
h = self.prenorm(x)
|
|
h = torch.cat(
|
|
[h, blk_emb.unsqueeze(-1).repeat(1, 1, x.shape[-1])], dim=1)
|
|
h = self.block1(h)
|
|
h = self.block2(h)
|
|
h = self.out(h[:, -self.contraction_dim*4:])
|
|
return h + x
|
|
|
|
|
|
class ConditioningEncoder(nn.Module):
|
|
def __init__(self,
|
|
spec_dim,
|
|
hidden_dim,
|
|
out_dim,
|
|
num_resolutions,
|
|
attn_blocks=6,
|
|
num_attn_heads=4,
|
|
do_checkpointing=False):
|
|
super().__init__()
|
|
attn = []
|
|
self.init = nn.Conv1d(spec_dim, hidden_dim, kernel_size=5, stride=2)
|
|
# nn.Embedding
|
|
self.resolution_embedding = ml.Embedding(num_resolutions, hidden_dim)
|
|
# Reduces the relative influence of this embedding from the start.
|
|
self.resolution_embedding.weight.data.mul(.1)
|
|
for a in range(attn_blocks):
|
|
attn.append(AttentionBlock(hidden_dim, num_attn_heads,
|
|
do_checkpoint=do_checkpointing))
|
|
attn.append(ResBlock(hidden_dim, dims=1,
|
|
checkpointing_enabled=do_checkpointing))
|
|
self.attn = nn.Sequential(*attn)
|
|
self.out = ml.Linear(hidden_dim, out_dim, bias=False)
|
|
self.dim = hidden_dim
|
|
self.do_checkpointing = do_checkpointing
|
|
|
|
def forward(self, x, resolution):
|
|
h = self.init(x) + self.resolution_embedding(resolution).unsqueeze(-1)
|
|
h = self.attn(h)
|
|
return self.out(h[:, :, 0])
|
|
|
|
|
|
class TransformerDiffusion(nn.Module):
|
|
"""
|
|
A diffusion model composed entirely of stacks of transformer layers. Why would you do it any other way?
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
resolution_steps=8,
|
|
max_window=384,
|
|
model_channels=1024,
|
|
contraction_dim=256,
|
|
num_layers=8,
|
|
in_channels=256,
|
|
input_vec_dim=1024,
|
|
out_channels=512, # mean and variance
|
|
time_embed_dim=256,
|
|
time_proj_dim=64,
|
|
cond_proj_dim=256,
|
|
num_heads=4,
|
|
dropout=0,
|
|
use_fp16=False,
|
|
# Parameters for regularization.
|
|
# This implements a mechanism similar to what is used in classifier-free training.
|
|
unconditioned_percentage=.1,
|
|
):
|
|
super().__init__()
|
|
|
|
self.in_channels = in_channels
|
|
self.model_channels = model_channels
|
|
self.time_embed_dim = time_embed_dim
|
|
self.out_channels = out_channels
|
|
self.dropout = dropout
|
|
self.unconditioned_percentage = unconditioned_percentage
|
|
self.enable_fp16 = use_fp16
|
|
self.resolution_steps = resolution_steps
|
|
self.max_window = max_window
|
|
self.preprocessed = None
|
|
|
|
self.time_embed = nn.Sequential(
|
|
linear(time_embed_dim, time_embed_dim),
|
|
nn.SiLU(),
|
|
linear(time_embed_dim, time_proj_dim),
|
|
)
|
|
self.prior_time_embed = nn.Sequential(
|
|
linear(time_embed_dim, time_embed_dim),
|
|
nn.SiLU(),
|
|
linear(time_embed_dim, time_proj_dim),
|
|
)
|
|
# nn.Embedding
|
|
self.resolution_embed = ml.Embedding(resolution_steps, time_proj_dim)
|
|
self.conditioning_encoder = ConditioningEncoder(
|
|
in_channels, model_channels, cond_proj_dim, resolution_steps, num_attn_heads=model_channels//64)
|
|
self.unconditioned_embedding = nn.Parameter(
|
|
torch.randn(1, cond_proj_dim))
|
|
|
|
self.inp_block = conv_nd(
|
|
1, in_channels+input_vec_dim, model_channels, 3, 1, 1)
|
|
self.layers = TimestepEmbedSequential(*[ConcatAttentionBlock(model_channels, contraction_dim, time_proj_dim*3 + cond_proj_dim,
|
|
num_heads, dropout) for _ in range(num_layers)])
|
|
|
|
self.out = nn.Sequential(
|
|
normalization(model_channels),
|
|
nn.SiLU(),
|
|
zero_module(conv_nd(1, model_channels,
|
|
out_channels, 3, padding=1)),
|
|
)
|
|
|
|
self.debug_codes = {}
|
|
|
|
def input_to_random_resolution_and_window(self, x, ts, diffuser):
|
|
"""
|
|
This function MUST be applied to the target *before* noising. It returns the reduced, re-scoped target as well
|
|
as caches an internal prior for the rescoped target which will be used in training.
|
|
Args:
|
|
x: Diffusion target
|
|
"""
|
|
resolution = randrange(0, self.resolution_steps)
|
|
resolution_scale = 2 ** resolution
|
|
s = F.interpolate(x, scale_factor=1/resolution_scale, mode='nearest')
|
|
s_diff = s.shape[-1] - self.max_window
|
|
if s_diff > 1:
|
|
start = randrange(0, s_diff)
|
|
s = s[:, :, start:start+self.max_window]
|
|
s_prior = F.interpolate(s, scale_factor=.25, mode='nearest')
|
|
s_prior = F.interpolate(s_prior, size=(
|
|
s.shape[-1],), mode='linear', align_corners=True)
|
|
|
|
# Now diffuse the prior randomly between the x timestep and 0.
|
|
adv = torch.rand_like(ts.float())
|
|
t_prior = (adv * ts).long() - 1
|
|
# The t_prior-1 below is an important detail: it forces s_prior to be unmodified for ts=0. It also means that t_prior is not on the same timescale as ts (instead it is shifted by 1).
|
|
s_prior_diffused = diffuser.q_sample(
|
|
s_prior, t_prior-1, torch.randn_like(s_prior), allow_negatives=True)
|
|
|
|
self.preprocessed = (s_prior_diffused, t_prior, torch.tensor(
|
|
[resolution] * x.shape[0], dtype=torch.long, device=x.device))
|
|
return s
|
|
|
|
def forward(self, x, timesteps, prior_timesteps=None, x_prior=None, resolution=None, conditioning_input=None, conditioning_free=False):
|
|
"""
|
|
Predicts the previous diffusion timestep of x, given a partially diffused low-resolution prior and a conditioning
|
|
input.
|
|
|
|
All parameters are optional because during training, input_to_random_resolution_and_window is used by a training
|
|
harness to preformat the inputs and fill in the parameters as state variables.
|
|
|
|
Args:
|
|
x: Prediction prior.
|
|
timesteps: Number of timesteps x has been diffused for.
|
|
prior_timesteps: Number of timesteps x_prior has been diffused for. Must be <= timesteps for each batch element. If nothing is specified, then [0] is assumed, e.g. a fully diffused prior.
|
|
x_prior: A low-resolution prior that guides the model.
|
|
resolution: Integer indicating the operating resolution level. '0' is the highest resolution.
|
|
conditioning_input: A semi-related (un-aligned) conditioning input which is used to guide diffusion. Similar to a class input, but hooked to a learned conditioning encoder.
|
|
conditioning_free: Whether or not to ignore the conditioning input.
|
|
"""
|
|
conditioning_input = x_prior if conditioning_input is None else conditioning_input
|
|
|
|
if resolution is None:
|
|
# This is assumed to be training.
|
|
assert self.preprocessed is not None, 'Preprocessing function not called.'
|
|
assert x_prior is None, 'Provided prior will not be used, instead preprocessing output will be used.'
|
|
x_prior, prior_timesteps, resolution = self.preprocessed
|
|
self.preprocessed = None
|
|
else:
|
|
assert x.shape[-1] > x_prior.shape[-1] * \
|
|
3.9, f'{x.shape} {x_prior.shape}'
|
|
if prior_timesteps is None:
|
|
# This is taken to mean a fully diffused prior was given.
|
|
# Assuming batch_size=1 for inference.
|
|
prior_timesteps = torch.tensor([0], device=x.device)
|
|
x_prior = F.interpolate(x_prior, size=(
|
|
x.shape[-1],), mode='linear', align_corners=True)
|
|
assert torch.all(timesteps - prior_timesteps >=
|
|
0), f'Prior timesteps should always be lower (more resolved) than input timesteps. {timesteps}, {prior_timesteps}'
|
|
|
|
if conditioning_free:
|
|
code_emb = self.unconditioned_embedding.repeat(x.shape[0], 1)
|
|
else:
|
|
MIN_COND_LEN = 200
|
|
MAX_COND_LEN = 1200
|
|
if self.training and conditioning_input.shape[-1] > MAX_COND_LEN:
|
|
clen = randrange(MIN_COND_LEN, MAX_COND_LEN)
|
|
gap = conditioning_input.shape[-1] - clen
|
|
cstart = randrange(0, gap)
|
|
conditioning_input = conditioning_input[:,
|
|
:, cstart:cstart+clen]
|
|
code_emb = self.conditioning_encoder(
|
|
conditioning_input, resolution)
|
|
|
|
# Mask out the conditioning input and x_prior inputs for whole batch elements, implementing something similar to classifier-free guidance.
|
|
if self.training and self.unconditioned_percentage > 0:
|
|
unconditioned_batches = torch.rand(
|
|
(x.shape[0], 1), device=x.device) < self.unconditioned_percentage
|
|
code_emb = torch.where(unconditioned_batches, self.unconditioned_embedding.repeat(
|
|
code_emb.shape[0], 1), code_emb)
|
|
|
|
with torch.autocast(x.device.type, enabled=self.enable_fp16):
|
|
time_emb = self.time_embed(
|
|
timestep_embedding(timesteps, self.time_embed_dim))
|
|
prior_time_emb = self.prior_time_embed(
|
|
timestep_embedding(prior_timesteps, self.time_embed_dim))
|
|
res_emb = self.resolution_embed(resolution)
|
|
blk_emb = torch.cat(
|
|
[time_emb, prior_time_emb, res_emb, code_emb], dim=1)
|
|
|
|
h = torch.cat([x, x_prior], dim=1)
|
|
h = self.inp_block(h)
|
|
for layer in self.layers:
|
|
h = checkpoint(layer, h, blk_emb)
|
|
|
|
h = h.float()
|
|
out = self.out(h)
|
|
|
|
# Defensively involve probabilistic or possibly unused parameters in loss so we don't get DDP errors.
|
|
unused_params = [self.unconditioned_embedding]
|
|
extraneous_addition = 0
|
|
for p in unused_params:
|
|
extraneous_addition = extraneous_addition + p.mean()
|
|
out = out + extraneous_addition * 0
|
|
|
|
return out
|
|
|
|
def get_grad_norm_parameter_groups(self):
|
|
attn1 = list(itertools.chain.from_iterable(
|
|
[lyr.block1.attn.parameters() for lyr in self.layers]))
|
|
attn2 = list(itertools.chain.from_iterable(
|
|
[lyr.block2.attn.parameters() for lyr in self.layers]))
|
|
ff1 = list(itertools.chain.from_iterable([lyr.block1.ff1.parameters() for lyr in self.layers] +
|
|
[lyr.block1.ff2.parameters() for lyr in self.layers]))
|
|
ff2 = list(itertools.chain.from_iterable([lyr.block2.ff1.parameters() for lyr in self.layers] +
|
|
[lyr.block2.ff2.parameters() for lyr in self.layers]))
|
|
blkout_layers = list(itertools.chain.from_iterable(
|
|
[lyr.out.parameters() for lyr in self.layers]))
|
|
groups = {
|
|
'prenorms': list(itertools.chain.from_iterable([lyr.prenorm.parameters() for lyr in self.layers])),
|
|
'blk1_attention_layers': attn1,
|
|
'blk2_attention_layers': attn2,
|
|
'attention_layers': attn1 + attn2,
|
|
'blk1_ff_layers': ff1,
|
|
'blk2_ff_layers': ff2,
|
|
'ff_layers': ff1 + ff2,
|
|
'block_out_layers': blkout_layers,
|
|
'out': list(self.out.parameters()),
|
|
'x_proj': list(self.inp_block.parameters()),
|
|
'layers': list(self.layers.parameters()),
|
|
'time_embed': list(self.time_embed.parameters()),
|
|
'prior_time_embed': list(self.prior_time_embed.parameters()),
|
|
'resolution_embed': list(self.resolution_embed.parameters()),
|
|
}
|
|
return groups
|
|
|
|
def before_step(self, step):
|
|
scaled_grad_parameters = list(itertools.chain.from_iterable(
|
|
[lyr.out.parameters() for lyr in self.layers]))
|
|
# Scale back the gradients of the blkout and prenorm layers by a constant factor. These get two orders of magnitudes
|
|
# higher gradients. Ideally we would use parameter groups, but ZeroRedundancyOptimizer makes this trickier than
|
|
# directly fiddling with the gradients.
|
|
for p in scaled_grad_parameters:
|
|
if hasattr(p, 'grad') and p.grad is not None:
|
|
p.grad *= .2
|
|
|
|
|
|
@register_model
|
|
def register_transformer_diffusion13(opt_net, opt):
|
|
return TransformerDiffusion(**opt_net['kwargs'])
|
|
|
|
|
|
def test_tfd():
|
|
from models.diffusion.gaussian_diffusion import get_named_beta_schedule
|
|
from models.diffusion.respace import SpacedDiffusion, space_timesteps
|
|
diffuser = SpacedDiffusion(use_timesteps=space_timesteps(4000, [4000]), model_mean_type='epsilon',
|
|
model_var_type='learned_range', loss_type='mse',
|
|
betas=get_named_beta_schedule('linear', 4000))
|
|
clip = torch.randn(2, 256, 10336)
|
|
cond = torch.randn(2, 256, 10336)
|
|
ts = torch.LongTensor([0, 0])
|
|
model = TransformerDiffusion(in_channels=256, model_channels=1024, contraction_dim=512,
|
|
num_heads=512//64, input_vec_dim=256, num_layers=12, dropout=.1,
|
|
unconditioned_percentage=.6)
|
|
model.get_grad_norm_parameter_groups()
|
|
for k in range(100):
|
|
x = model.input_to_random_resolution_and_window(clip, ts, diffuser)
|
|
model(x, ts, conditioning_input=cond)
|
|
|
|
|
|
def remove_conditioning(sd_path):
|
|
sd = torch.load(sd_path)
|
|
del sd['unconditioned_embedding']
|
|
torch.save(sd, sd_path.replace('.pth', '') + '_fixed.pth')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
# remove_conditioning('X:\\dlas\\experiments\\train_music_diffusion_multilevel_sr_pre\\models\\12500_generator.pth')
|
|
test_tfd()
|