DL-Art-School/codes/scripts/byol/byol_segformer_playground.py
James Betker fb405d9ef1 CIFAR stuff
- Extract coarse labels for the CIFAR dataset
- Add simple resnet that branches lower layers based on coarse labels
- Some other cleanup
2021-06-05 14:16:02 -06:00

250 lines
8.7 KiB
Python

import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from PIL import Image
from torch.utils.data import DataLoader
from torchvision.transforms import ToTensor, Normalize
from tqdm import tqdm
from data.image_folder_dataset import ImageFolderDataset
from models.segformer.segformer import Segformer
# Computes the structural euclidean distance between [x,y]. "Structural" here means the [h,w] dimensions are preserved
# and the distance is computed across the channel dimension.
from utils.kmeans import kmeans, kmeans_predict
from utils.options import dict_to_nonedict
def structural_euc_dist(x, y):
diff = torch.square(x - y)
sum = torch.sum(diff, dim=-1)
return torch.sqrt(sum)
def cosine_similarity(x, y):
x = norm(x)
y = norm(y)
return -nn.CosineSimilarity()(x, y) # probably better to just use this class to perform the calc. Just left this here to remind myself.
def key_value_difference(x, y):
x = F.normalize(x, dim=-1, p=2)
y = F.normalize(y, dim=-1, p=2)
return 2 - 2 * (x * y).sum(dim=-1)
def norm(x):
sh = x.shape
sh_r = tuple([sh[i] if i != len(sh)-1 else 1 for i in range(len(sh))])
return (x - torch.mean(x, dim=-1).reshape(sh_r)) / torch.std(x, dim=-1).reshape(sh_r)
def im_norm(x):
return (((x - torch.mean(x, dim=(2,3)).reshape(-1,1,1,1)) / torch.std(x, dim=(2,3)).reshape(-1,1,1,1)) * .5) + .5
def get_image_folder_dataloader(batch_size, num_workers, target_size=224, shuffle=True):
dataset_opt = dict_to_nonedict({
'name': 'amalgam',
#'paths': ['F:\\4k6k\\datasets\\ns_images\\imagesets\\pn_coven\\cropped2'],
#'paths': ['F:\\4k6k\\datasets\\ns_images\\imagesets\\imageset_1024_square_with_new'],
#'paths': ['F:\\4k6k\\datasets\\ns_images\\imagesets\\imageset_256_tiled_filtered_flattened'],
#'paths': ['F:\\4k6k\\datasets\\ns_images\\imagesets\\1024_test'],
'paths': ['E:\\4k6k\\datasets\\ns_images\\imagesets\\imageset_256_full'],
'weights': [1],
'target_size': target_size,
'force_multiple': 32,
'normalize': 'imagenet',
'scale': 1
})
dataset = ImageFolderDataset(dataset_opt)
return DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, shuffle=shuffle)
def _find_layer(net, layer_name):
if type(layer_name) == str:
modules = dict([*net.named_modules()])
return modules.get(layer_name, None)
elif type(layer_name) == int:
children = [*net.children()]
return children[layer_name]
return None
layer_hooked_value = None
def _hook(_, __, output):
global layer_hooked_value
layer_hooked_value = output
def register_hook(net, layer_name):
layer = _find_layer(net, layer_name)
assert layer is not None, f'hidden layer ({self.layer}) not found'
layer.register_forward_hook(_hook)
def get_latent_for_img(model, img, pos):
img_t = ToTensor()(Image.open(img)).to('cuda')[:3]
img_t = Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)(img_t).unsqueeze(0)
_, _, h, w = img_t.shape
# Center crop img_t and resize to 224.
d = min(h, w)
dh, dw = (h-d)//2, (w-d)//2
if dw != 0:
img_t = img_t[:, :, :, dw:-dw]
pos[1] = pos[1]-dw
elif dh != 0:
img_t = img_t[:, :, dh:-dh, :]
pos[0] = pos[0]-dh
scale = 224 / img_t.shape[-1]
pos = (pos * scale).long()
assert(pos.min() >= 0 and pos.max() < 224)
img_t = img_t[:,:3,:,:]
img_t = torch.nn.functional.interpolate(img_t, size=(224, 224), mode="area")
latent = model(img=img_t,pos=pos)
return latent
def produce_latent_dict(model):
batch_size = 32
num_workers = 4
dataloader = get_image_folder_dataloader(batch_size, num_workers)
id = 0
paths = []
latents = []
points = []
for batch in tqdm(dataloader):
hq = batch['hq'].to('cuda')
# Pull several points from every image.
for k in range(10):
_, _, h, _ = hq.shape
point = torch.randint(h//4, 3*h//4, (2,)).long().to(hq.device)
model(img=hq, pos=point)
l = layer_hooked_value.cpu().split(1, dim=0)
latents.extend(l)
points.extend([point for p in range(batch_size)])
paths.extend(batch['HQ_path'])
id += batch_size
if id > 10000:
print("Saving checkpoint..")
torch.save((latents, points, paths), '../results_segformer.pth')
id = 0
def find_similar_latents(model, compare_fn=structural_euc_dist):
global layer_hooked_value
img = 'F:\\dlas\\results\\bobz.png'
#img = 'F:\\4k6k\\datasets\\ns_images\\adrianna\\analyze\\analyze_xx\\nicky_xx.jpg'
point=torch.tensor([154,330], dtype=torch.long, device='cuda')
output_path = '../../../results/byol_resnet_similars'
os.makedirs(output_path, exist_ok=True)
imglatent = get_latent_for_img(model, img, point).squeeze().unsqueeze(0)
_, c = imglatent.shape
batch_size = 512
num_workers = 1
dataloader = get_image_folder_dataloader(batch_size, num_workers)
id = 0
output_batch = 1
results = []
result_paths = []
results_points = []
for batch in tqdm(dataloader):
hq = batch['hq'].to('cuda')
_,_,h,w = hq.shape
point = torch.randint(h//4, 3*h//4, (2,)).long().to(hq.device)
latent = model(img=hq, pos=point)
compared = compare_fn(imglatent.repeat(latent.shape[0], 1), latent)
results.append(compared.cpu())
result_paths.extend(batch['HQ_path'])
results_points.append(point.unsqueeze(0).repeat(batch_size,1))
id += batch_size
if id > 10000:
k = 10
results = torch.cat(results, dim=0)
results_points = torch.cat(results_points, dim=0)
vals, inds = torch.topk(results, k, largest=False)
for i in inds:
point = results_points[i]
mag = int(results[i].item() * 100000000)
hqr = ToTensor()(Image.open(result_paths[i])).to('cuda')
hqr *= .5
hqr[:,point[0]-3:point[0]+3,point[1]-3:point[1]+3] *= 2
torchvision.utils.save_image(hqr, os.path.join(output_path, f'{mag:08}_{output_batch}_{i}.jpg'))
results = []
result_paths = []
results_points = []
id = 0
def build_kmeans():
latents, _, _ = torch.load('../results_segformer.pth')
latents = torch.cat(latents, dim=0).squeeze().to('cuda')[50000:] * 10000
cluster_ids_x, cluster_centers = kmeans(latents, num_clusters=16, distance="euclidean", device=torch.device('cuda:0'))
torch.save((cluster_ids_x, cluster_centers), '../k_means_segformer.pth')
class UnNormalize(object):
def __init__(self, mean, std):
self.mean = mean
self.std = std
def __call__(self, tensor):
"""
Args:
tensor (Tensor): Tensor image of size (C, H, W) to be normalized.
Returns:
Tensor: Normalized image.
"""
for t, m, s in zip(tensor, self.mean, self.std):
t.mul_(s).add_(m)
# The normalize code -> t.sub_(m).div_(s)
return tensor
def use_kmeans():
output = "../results/k_means_segformer/"
_, centers = torch.load('../k_means_segformer.pth')
centers = centers.to('cuda')
batch_size = 32
num_workers = 1
dataloader = get_image_folder_dataloader(batch_size, num_workers, target_size=224, shuffle=True)
denorm = UnNormalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
for i, batch in enumerate(tqdm(dataloader)):
hq = batch['hq'].to('cuda')
_,_,h,w = hq.shape
point = torch.randint(h//4, 3*h//4, (2,)).long().to(hq.device)
model(hq, point)
l = layer_hooked_value.clone().squeeze()
pred = kmeans_predict(l, centers)
hq = denorm(hq * .5)
hq[:,:,point[0]-5:point[0]+5,point[1]-5:point[1]+5] *= 2
for b in range(pred.shape[0]):
outpath = os.path.join(output, str(pred[b].item()))
os.makedirs(outpath, exist_ok=True)
torchvision.utils.save_image(hq[b], os.path.join(outpath, f'{i*batch_size+b}.png'))
if __name__ == '__main__':
pretrained_path = '../../../experiments/segformer_contrastive.pth'
model = Segformer().to('cuda')
sd = torch.load(pretrained_path)
resnet_sd = {}
for k, v in sd.items():
if 'target_encoder.net.' in k:
resnet_sd[k.replace('target_encoder.net.', '')] = v
model.load_state_dict(resnet_sd, strict=True)
model.eval()
register_hook(model, 'tail')
with torch.no_grad():
find_similar_latents(model, structural_euc_dist)
#produce_latent_dict(model)
#build_kmeans()
#use_kmeans()