DL-Art-School/codes/test.py
James Betker 0e3ea63a14 Misc
2020-10-05 18:01:50 -06:00

58 lines
2.0 KiB
Python

import os.path as osp
import logging
import time
import argparse
from collections import OrderedDict
import os
import options.options as option
import utils.util as util
from data.util import bgr2ycbcr
import models.archs.SwitchedResidualGenerator_arch as srg
from switched_conv_util import save_attention_to_image, save_attention_to_image_rgb
from switched_conv import compute_attention_specificity
from data import create_dataset, create_dataloader
from models import create_model
from tqdm import tqdm
import torch
import models.networks as networks
class CheckpointFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, run_function, length, *args):
ctx.run_function = run_function
ctx.input_tensors = list(args[:length])
ctx.input_params = list(args[length:])
with torch.no_grad():
output_tensors = ctx.run_function(*ctx.input_tensors)
return output_tensors
@staticmethod
def backward(ctx, *output_grads):
for i in range(len(ctx.input_tensors)):
temp = ctx.input_tensors[i]
ctx.input_tensors[i] = temp.detach()
ctx.input_tensors[i].requires_grad = True
with torch.enable_grad():
output_tensors = ctx.run_function(*ctx.input_tensors)
print("Backpropping")
input_grads = torch.autograd.grad(output_tensors, ctx.input_tensors + ctx.input_params, output_grads, allow_unused=True)
return (None, None) + input_grads
from models.archs.arch_util import ConvGnSilu, UpconvBlock
import torch.nn as nn
if __name__ == "__main__":
model = nn.Sequential(ConvGnSilu(3, 64, 3, norm=False),
ConvGnSilu(64, 3, 3, norm=False)
)
model.train()
seed = torch.randn(1,3,32,32)
recurrent = seed
outs = []
for i in range(10):
args = (recurrent, ) + tuple(model.parameters())
recurrent = CheckpointFunction.apply(model, 1, *args)
outs.append(recurrent)
l = nn.L1Loss()(recurrent, torch.randn(1,3,32,32))
l.backward()