DL-Art-School/codes/models/audio/music/transformer_diffusion13.py

321 lines
15 KiB
Python

import itertools
import random
from random import randrange
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch_intermediary as ml
from models.arch_util import ResBlock, TimestepEmbedSequential, AttentionBlock, build_local_attention_mask, cGLU, \
RelativeQKBias
from models.diffusion.nn import timestep_embedding, normalization, zero_module, conv_nd, linear
from models.diffusion.unet_diffusion import TimestepBlock
from trainer.networks import register_model
from utils.util import checkpoint
class SubBlock(nn.Module):
def __init__(self, inp_dim, contraction_dim, heads, dropout):
super().__init__()
self.dropout = nn.Dropout(p=dropout)
self.attn = AttentionBlock(inp_dim, out_channels=contraction_dim, num_heads=heads)
self.register_buffer('mask', build_local_attention_mask(n=6000, l=64), persistent=False)
self.pos_bias = RelativeQKBias(l=64, max_positions=6000)
ff_contract = contraction_dim//2
self.ff1 = nn.Sequential(nn.Conv1d(inp_dim+contraction_dim, ff_contract, kernel_size=1),
nn.GroupNorm(8, ff_contract),
cGLU(ff_contract))
self.ff2 = nn.Sequential(nn.Conv1d(inp_dim+contraction_dim*3//2, ff_contract, kernel_size=3, padding=1),
nn.GroupNorm(8, ff_contract),
cGLU(ff_contract))
def forward(self, x):
ah = self.dropout(self.attn(x, mask=self.mask, qk_bias=self.pos_bias(x.shape[-1])))
h = torch.cat([ah, x], dim=1)
hf = self.dropout(checkpoint(self.ff1, h))
h = torch.cat([h, hf], dim=1)
hf = self.dropout(checkpoint(self.ff2, h))
return torch.cat([h, hf], dim=1)
class ConcatAttentionBlock(TimestepBlock):
def __init__(self, trunk_dim, contraction_dim, blk_dim, heads, dropout):
super().__init__()
self.contraction_dim = contraction_dim
self.prenorm = nn.GroupNorm(8, trunk_dim)
self.block1 = SubBlock(trunk_dim+blk_dim, contraction_dim, heads, dropout)
self.block2 = SubBlock(trunk_dim+blk_dim+contraction_dim*2, contraction_dim, heads, dropout)
self.out = nn.Conv1d(contraction_dim*4, trunk_dim, kernel_size=1, bias=False)
self.out.weight.data.zero_()
def forward(self, x, blk_emb):
h = self.prenorm(x)
h = torch.cat([h, blk_emb.unsqueeze(-1).repeat(1,1,x.shape[-1])], dim=1)
h = self.block1(h)
h = self.block2(h)
h = self.out(h[:,-self.contraction_dim*4:])
return h + x
class ConditioningEncoder(nn.Module):
def __init__(self,
spec_dim,
hidden_dim,
out_dim,
num_resolutions,
attn_blocks=6,
num_attn_heads=4,
do_checkpointing=False):
super().__init__()
attn = []
self.init = nn.Conv1d(spec_dim, hidden_dim, kernel_size=5, stride=2)
# nn.Embedding
self.resolution_embedding = ml.Embedding(num_resolutions, hidden_dim)
self.resolution_embedding.weight.data.mul(.1) # Reduces the relative influence of this embedding from the start.
for a in range(attn_blocks):
attn.append(AttentionBlock(hidden_dim, num_attn_heads, do_checkpoint=do_checkpointing))
attn.append(ResBlock(hidden_dim, dims=1, checkpointing_enabled=do_checkpointing))
self.attn = nn.Sequential(*attn)
self.out = ml.Linear(hidden_dim, out_dim, bias=False)
self.dim = hidden_dim
self.do_checkpointing = do_checkpointing
def forward(self, x, resolution):
h = self.init(x) + self.resolution_embedding(resolution).unsqueeze(-1)
h = self.attn(h)
return self.out(h[:, :, 0])
class TransformerDiffusion(nn.Module):
"""
A diffusion model composed entirely of stacks of transformer layers. Why would you do it any other way?
"""
def __init__(
self,
resolution_steps=8,
max_window=384,
model_channels=1024,
contraction_dim=256,
num_layers=8,
in_channels=256,
input_vec_dim=1024,
out_channels=512, # mean and variance
time_embed_dim=256,
time_proj_dim=64,
cond_proj_dim=256,
num_heads=4,
dropout=0,
use_fp16=False,
# Parameters for regularization.
unconditioned_percentage=.1, # This implements a mechanism similar to what is used in classifier-free training.
):
super().__init__()
self.in_channels = in_channels
self.model_channels = model_channels
self.time_embed_dim = time_embed_dim
self.out_channels = out_channels
self.dropout = dropout
self.unconditioned_percentage = unconditioned_percentage
self.enable_fp16 = use_fp16
self.resolution_steps = resolution_steps
self.max_window = max_window
self.preprocessed = None
self.time_embed = nn.Sequential(
linear(time_embed_dim, time_embed_dim),
nn.SiLU(),
linear(time_embed_dim, time_proj_dim),
)
self.prior_time_embed = nn.Sequential(
linear(time_embed_dim, time_embed_dim),
nn.SiLU(),
linear(time_embed_dim, time_proj_dim),
)
# nn.Embedding
self.resolution_embed = ml.Embedding(resolution_steps, time_proj_dim)
self.conditioning_encoder = ConditioningEncoder(in_channels, model_channels, cond_proj_dim, resolution_steps, num_attn_heads=model_channels//64)
self.unconditioned_embedding = nn.Parameter(torch.randn(1,cond_proj_dim))
self.inp_block = conv_nd(1, in_channels+input_vec_dim, model_channels, 3, 1, 1)
self.layers = TimestepEmbedSequential(*[ConcatAttentionBlock(model_channels, contraction_dim, time_proj_dim*3 + cond_proj_dim,
num_heads, dropout) for _ in range(num_layers)])
self.out = nn.Sequential(
normalization(model_channels),
nn.SiLU(),
zero_module(conv_nd(1, model_channels, out_channels, 3, padding=1)),
)
self.debug_codes = {}
def input_to_random_resolution_and_window(self, x, ts, diffuser):
"""
This function MUST be applied to the target *before* noising. It returns the reduced, re-scoped target as well
as caches an internal prior for the rescoped target which will be used in training.
Args:
x: Diffusion target
"""
resolution = randrange(0, self.resolution_steps)
resolution_scale = 2 ** resolution
s = F.interpolate(x, scale_factor=1/resolution_scale, mode='nearest')
s_diff = s.shape[-1] - self.max_window
if s_diff > 1:
start = randrange(0, s_diff)
s = s[:,:,start:start+self.max_window]
s_prior = F.interpolate(s, scale_factor=.25, mode='nearest')
s_prior = F.interpolate(s_prior, size=(s.shape[-1],), mode='linear', align_corners=True)
# Now diffuse the prior randomly between the x timestep and 0.
adv = torch.rand_like(ts.float())
t_prior = (adv * ts).long() - 1
# The t_prior-1 below is an important detail: it forces s_prior to be unmodified for ts=0. It also means that t_prior is not on the same timescale as ts (instead it is shifted by 1).
s_prior_diffused = diffuser.q_sample(s_prior, t_prior-1, torch.randn_like(s_prior), allow_negatives=True)
self.preprocessed = (s_prior_diffused, t_prior, torch.tensor([resolution] * x.shape[0], dtype=torch.long, device=x.device))
return s
def forward(self, x, timesteps, prior_timesteps=None, x_prior=None, resolution=None, conditioning_input=None, conditioning_free=False):
"""
Predicts the previous diffusion timestep of x, given a partially diffused low-resolution prior and a conditioning
input.
All parameters are optional because during training, input_to_random_resolution_and_window is used by a training
harness to preformat the inputs and fill in the parameters as state variables.
Args:
x: Prediction prior.
timesteps: Number of timesteps x has been diffused for.
prior_timesteps: Number of timesteps x_prior has been diffused for. Must be <= timesteps for each batch element. If nothing is specified, then [0] is assumed, e.g. a fully diffused prior.
x_prior: A low-resolution prior that guides the model.
resolution: Integer indicating the operating resolution level. '0' is the highest resolution.
conditioning_input: A semi-related (un-aligned) conditioning input which is used to guide diffusion. Similar to a class input, but hooked to a learned conditioning encoder.
conditioning_free: Whether or not to ignore the conditioning input.
"""
conditioning_input = x_prior if conditioning_input is None else conditioning_input
if resolution is None:
# This is assumed to be training.
assert self.preprocessed is not None, 'Preprocessing function not called.'
assert x_prior is None, 'Provided prior will not be used, instead preprocessing output will be used.'
x_prior, prior_timesteps, resolution = self.preprocessed
self.preprocessed = None
else:
assert x.shape[-1] > x_prior.shape[-1] * 3.9, f'{x.shape} {x_prior.shape}'
if prior_timesteps is None:
# This is taken to mean a fully diffused prior was given.
prior_timesteps = torch.tensor([0], device=x.device) # Assuming batch_size=1 for inference.
x_prior = F.interpolate(x_prior, size=(x.shape[-1],), mode='linear', align_corners=True)
assert torch.all(timesteps - prior_timesteps >= 0), f'Prior timesteps should always be lower (more resolved) than input timesteps. {timesteps}, {prior_timesteps}'
if conditioning_free:
code_emb = self.unconditioned_embedding.repeat(x.shape[0], 1)
else:
MIN_COND_LEN = 200
MAX_COND_LEN = 1200
if self.training and conditioning_input.shape[-1] > MAX_COND_LEN:
clen = randrange(MIN_COND_LEN, MAX_COND_LEN)
gap = conditioning_input.shape[-1] - clen
cstart = randrange(0, gap)
conditioning_input = conditioning_input[:,:,cstart:cstart+clen]
code_emb = self.conditioning_encoder(conditioning_input, resolution)
# Mask out the conditioning input and x_prior inputs for whole batch elements, implementing something similar to classifier-free guidance.
if self.training and self.unconditioned_percentage > 0:
unconditioned_batches = torch.rand((x.shape[0], 1), device=x.device) < self.unconditioned_percentage
code_emb = torch.where(unconditioned_batches, self.unconditioned_embedding.repeat(code_emb.shape[0], 1), code_emb)
with torch.autocast(x.device.type, enabled=self.enable_fp16):
time_emb = self.time_embed(timestep_embedding(timesteps, self.time_embed_dim))
prior_time_emb = self.prior_time_embed(timestep_embedding(prior_timesteps, self.time_embed_dim))
res_emb = self.resolution_embed(resolution)
blk_emb = torch.cat([time_emb, prior_time_emb, res_emb, code_emb], dim=1)
h = torch.cat([x, x_prior], dim=1)
h = self.inp_block(h)
for layer in self.layers:
h = checkpoint(layer, h, blk_emb)
h = h.float()
out = self.out(h)
# Defensively involve probabilistic or possibly unused parameters in loss so we don't get DDP errors.
unused_params = [self.unconditioned_embedding]
extraneous_addition = 0
for p in unused_params:
extraneous_addition = extraneous_addition + p.mean()
out = out + extraneous_addition * 0
return out
def get_grad_norm_parameter_groups(self):
attn1 = list(itertools.chain.from_iterable([lyr.block1.attn.parameters() for lyr in self.layers]))
attn2 = list(itertools.chain.from_iterable([lyr.block2.attn.parameters() for lyr in self.layers]))
ff1 = list(itertools.chain.from_iterable([lyr.block1.ff1.parameters() for lyr in self.layers] +
[lyr.block1.ff2.parameters() for lyr in self.layers]))
ff2 = list(itertools.chain.from_iterable([lyr.block2.ff1.parameters() for lyr in self.layers] +
[lyr.block2.ff2.parameters() for lyr in self.layers]))
blkout_layers = list(itertools.chain.from_iterable([lyr.out.parameters() for lyr in self.layers]))
groups = {
'prenorms': list(itertools.chain.from_iterable([lyr.prenorm.parameters() for lyr in self.layers])),
'blk1_attention_layers': attn1,
'blk2_attention_layers': attn2,
'attention_layers': attn1 + attn2,
'blk1_ff_layers': ff1,
'blk2_ff_layers': ff2,
'ff_layers': ff1 + ff2,
'block_out_layers': blkout_layers,
'out': list(self.out.parameters()),
'x_proj': list(self.inp_block.parameters()),
'layers': list(self.layers.parameters()),
'time_embed': list(self.time_embed.parameters()),
'prior_time_embed': list(self.prior_time_embed.parameters()),
'resolution_embed': list(self.resolution_embed.parameters()),
}
return groups
def before_step(self, step):
scaled_grad_parameters = list(itertools.chain.from_iterable([lyr.out.parameters() for lyr in self.layers]))
# Scale back the gradients of the blkout and prenorm layers by a constant factor. These get two orders of magnitudes
# higher gradients. Ideally we would use parameter groups, but ZeroRedundancyOptimizer makes this trickier than
# directly fiddling with the gradients.
for p in scaled_grad_parameters:
if hasattr(p, 'grad') and p.grad is not None:
p.grad *= .2
@register_model
def register_transformer_diffusion13(opt_net, opt):
return TransformerDiffusion(**opt_net['kwargs'])
def test_tfd():
from models.diffusion.respace import SpacedDiffusion
from models.diffusion.respace import space_timesteps
from models.diffusion.gaussian_diffusion import get_named_beta_schedule
diffuser = SpacedDiffusion(use_timesteps=space_timesteps(4000, [4000]), model_mean_type='epsilon',
model_var_type='learned_range', loss_type='mse',
betas=get_named_beta_schedule('linear', 4000))
clip = torch.randn(2,256,10336)
cond = torch.randn(2,256,10336)
ts = torch.LongTensor([0, 0])
model = TransformerDiffusion(in_channels=256, model_channels=1024, contraction_dim=512,
num_heads=512//64, input_vec_dim=256, num_layers=12, dropout=.1,
unconditioned_percentage=.6)
model.get_grad_norm_parameter_groups()
for k in range(100):
x = model.input_to_random_resolution_and_window(clip, ts, diffuser)
model(x, ts, conditioning_input=cond)
def remove_conditioning(sd_path):
sd = torch.load(sd_path)
del sd['unconditioned_embedding']
torch.save(sd, sd_path.replace('.pth', '') + '_fixed.pth')
if __name__ == '__main__':
#remove_conditioning('X:\\dlas\\experiments\\train_music_diffusion_multilevel_sr_pre\\models\\12500_generator.pth')
test_tfd()