DL-Art-School/codes/models/audio/tts/unified_voice3.py

460 lines
21 KiB
Python

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch_intermediary as ml
from transformers import GPT2Config, GPT2PreTrainedModel
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
from transformers.models.gpt2.modeling_gpt2 import GPT2Attention
from transformers.utils.model_parallel_utils import get_device_map, assert_device_map
from models.arch_util import AttentionBlock
from models.audio.tts.transformer_builders import build_hf_gpt_transformer
from models.lucidrains.x_transformers import RotaryEmbedding, apply_rotary_pos_emb
from trainer.networks import register_model
from utils.util import opt_get
class ResBlock(nn.Module):
"""
Basic residual convolutional block that uses GroupNorm.
"""
def __init__(self, chan):
super().__init__()
self.net = nn.Sequential(
nn.Conv1d(chan, chan, kernel_size=3, padding=1),
nn.GroupNorm(chan//8, chan),
nn.ReLU(),
nn.Conv1d(chan, chan, kernel_size=3, padding=1),
nn.GroupNorm(chan//8, chan)
)
def forward(self, x):
return F.relu(self.net(x) + x)
class GPT2InferenceModel(GPT2PreTrainedModel):
def __init__(self, config, gpt, posterior_pos_emb, embeddings, norm, linear):
super().__init__(config)
self.transformer = gpt
self.posterior_pos_embedding = posterior_pos_emb
self.embeddings = embeddings
self.head = nn.Sequential(norm, linear)
# Model parallel
self.model_parallel = False
self.device_map = None
self.cached_prior_emb = None
def parallelize(self, device_map=None):
self.device_map = (
get_device_map(len(self.transformer.h), range(torch.cuda.device_count()))
if device_map is None
else device_map
)
assert_device_map(self.device_map, len(self.transformer.h))
self.transformer.parallelize(self.device_map)
self.head = self.head.to(self.transformer.first_device)
self.model_parallel = True
def deparallelize(self):
self.transformer.deparallelize()
self.transformer = self.transformer.to("cpu")
self.head = self.head.to("cpu")
self.model_parallel = False
torch.cuda.empty_cache()
def get_output_embeddings(self):
return self.head
def set_output_embeddings(self, new_embeddings):
self.head = new_embeddings
def store_prior_emb(self, mel_emb):
self.cached_prior_emb = mel_emb
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
token_type_ids = kwargs.get("token_type_ids", None)
# only last token for inputs_ids if past is defined in kwargs
if past:
input_ids = input_ids[:, -1].unsqueeze(-1)
if token_type_ids is not None:
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
attention_mask = kwargs.get("attention_mask", None)
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past:
position_ids = position_ids[:, -1].unsqueeze(-1)
else:
position_ids = None
return {
"input_ids": input_ids,
"past_key_values": past,
"use_cache": kwargs.get("use_cache"),
"position_ids": position_ids,
"attention_mask": attention_mask,
"token_type_ids": token_type_ids,
}
def forward(
self,
input_ids=None,
past_key_values=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
labels=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
assert self.cached_prior_emb is not None
assert inputs_embeds is None # Not supported by this inference model.
assert labels is None # Training not supported by this inference model.
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Create embedding
prior_len = self.cached_prior_emb.shape[1]
if input_ids.shape[1] != 1:
posterior_inputs = input_ids[:, prior_len:]
posterior_emb = self.embeddings(posterior_inputs)
posterior_emb = posterior_emb + self.posterior_pos_embedding(posterior_emb)
if self.cached_prior_emb.shape[0] != posterior_emb.shape[0]:
prior_emb = self.cached_prior_emb.repeat_interleave(posterior_emb.shape[0] // self.cached_prior_emb.shape[0], 0)
else:
prior_emb = self.cached_prior_emb
emb = torch.cat([prior_emb, posterior_emb], dim=1)
else:
emb = self.embeddings(input_ids)
emb = emb + self.posterior_pos_embedding.get_fixed_embedding(attention_mask.shape[1] - prior_len, attention_mask.device)
transformer_outputs = self.transformer(
inputs_embeds=emb,
past_key_values=past_key_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
# Set device for model parallelism
if self.model_parallel:
torch.cuda.set_device(self.transformer.first_device)
hidden_states = hidden_states.to(self.head.weight.device)
logits = self.head(hidden_states)
if not return_dict:
return (logits,) + transformer_outputs[1:]
return CausalLMOutputWithCrossAttentions(
loss=None,
logits=logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
cross_attentions=transformer_outputs.cross_attentions,
)
@staticmethod
def _reorder_cache(past, beam_idx):
"""
This function is used to re-order the :obj:`past_key_values` cache if
:meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step.
"""
return tuple(
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
for layer_past in past
)
class ConditioningEncoder(nn.Module):
def __init__(self,
spec_dim,
embedding_dim,
attn_blocks=6,
num_attn_heads=4,
do_checkpointing=False,
mean=False):
super().__init__()
attn = []
self.init = nn.Conv1d(spec_dim, embedding_dim, kernel_size=1)
for a in range(attn_blocks):
attn.append(AttentionBlock(embedding_dim, num_attn_heads, do_checkpoint=do_checkpointing))
self.attn = nn.Sequential(*attn)
self.dim = embedding_dim
self.do_checkpointing = do_checkpointing
self.mean = mean
def forward(self, x):
h = self.init(x)
h = self.attn(h)
if self.mean:
return h.mean(dim=2)
else:
return h[:, :, 0]
class MelEncoder(nn.Module):
def __init__(self, channels, mel_channels=80, resblocks_per_reduction=2):
super().__init__()
self.channels = channels
self.encoder = nn.Sequential(nn.Conv1d(mel_channels, channels//4, kernel_size=3, padding=1),
nn.Sequential(*[ResBlock(channels//4) for _ in range(resblocks_per_reduction)]),
nn.Conv1d(channels//4, channels//2, kernel_size=3, stride=2, padding=1),
nn.GroupNorm(channels//16, channels//2),
nn.ReLU(),
nn.Sequential(*[ResBlock(channels//2) for _ in range(resblocks_per_reduction)]),
nn.Conv1d(channels//2, channels, kernel_size=3, stride=2, padding=1),
nn.GroupNorm(channels//8, channels),
nn.ReLU(),
nn.Sequential(*[ResBlock(channels) for _ in range(resblocks_per_reduction)]),
)
self.reduction = 4
def forward(self, x):
for e in self.encoder:
x = e(x)
return x.permute(0,2,1)
class UnifiedVoice(nn.Module):
def __init__(self, layers=8, model_dim=512, heads=8, max_text_tokens=120, max_mel_tokens=250, max_conditioning_inputs=1,
mel_length_compression=1024, number_text_tokens=256, number_mel_codes=8194, start_mel_token=8192,
stop_mel_token=8193, start_text_token=None, number_aligned_text_codes=256, checkpointing=True, types=1,
freeze_for_aligned_codes=False,):
"""
Args:
layers: Number of layers in transformer stack.
model_dim: Operating dimensions of the transformer
heads: Number of transformer heads. Must be divisible by model_dim. Recommend model_dim//64
max_text_tokens: Maximum number of text tokens that will be encountered by model.
max_mel_tokens: Maximum number of MEL tokens that will be encountered by model.
max_conditioning_inputs: Maximum number of conditioning inputs provided to the model. If (1), conditioning input can be of format (b,80,s), otherwise (b,n,80,s).
mel_length_compression: The factor between <number_input_samples> and <mel_tokens>. Used to compute MEL code padding given wav input length.
number_text_tokens:
number_mel_codes:
start_mel_token:
stop_mel_token:
checkpointing:
"""
super().__init__()
self.number_text_tokens = number_text_tokens
self.start_text_token = number_text_tokens * types if start_text_token is None else start_text_token
self.stop_text_token = 0
self.number_mel_codes = number_mel_codes
self.start_mel_token = start_mel_token
self.stop_mel_token = stop_mel_token
self.layers = layers
self.heads = heads
self.max_conditioning_inputs = max_conditioning_inputs
self.max_mel_tokens = -1 if max_mel_tokens == -1 else max_mel_tokens+2+self.max_conditioning_inputs
self.max_text_tokens = -1 if max_text_tokens == -1 else max_text_tokens+2
self.model_dim = model_dim
self.mel_length_compression = mel_length_compression
self.conditioning_encoder = ConditioningEncoder(80, model_dim, num_attn_heads=heads)
# nn.Embedding
self.text_embedding = ml.Embedding(self.number_text_tokens*types+1, model_dim)
# nn.Embedding
self.mel_embedding = ml.Embedding(self.number_mel_codes, model_dim)
self.gpt, self.mel_pos_embedding, self.text_pos_embedding, self.mel_layer_pos_embedding, self.text_layer_pos_embedding = \
build_hf_gpt_transformer(layers, model_dim, heads, self.max_mel_tokens, self.max_text_tokens, checkpointing)
self.final_norm = nn.LayerNorm(model_dim)
self.text_head = ml.Linear(model_dim, self.number_text_tokens*types+1)
self.mel_head = ml.Linear(model_dim, self.number_mel_codes)
self.aligned_head = ml.Linear(model_dim, number_aligned_text_codes)
# Initialize the embeddings per the GPT-2 scheme
embeddings = [self.text_embedding, self.mel_embedding]
for module in embeddings:
module.weight.data.normal_(mean=0.0, std=.02)
if freeze_for_aligned_codes:
for p in self.parameters():
p.DO_NOT_TRAIN = True
p.requires_grad = False
for p in self.aligned_head.parameters():
del p.DO_NOT_TRAIN
p.requires_grad = True
def get_grad_norm_parameter_groups(self):
return {
'conditioning_encoder': list(self.conditioning_encoder.parameters()),
'gpt': list(self.gpt.parameters()),
'heads': list(self.text_head.parameters()) + list(self.mel_head.parameters()),
}
def build_aligned_inputs_and_targets(self, input, start_token, stop_token):
inp = F.pad(input, (1,0), value=start_token)
tar = F.pad(input, (0,1), value=stop_token)
return inp, tar
def set_mel_padding(self, mel_input_tokens, wav_lengths):
"""
Given mel tokens that are derived from a padded audio clip and the actual lengths of each batch element in
that audio clip, reformats the tokens with STOP_MEL_TOKEN in place of the zero padding. This is required
preformatting to create a working TTS model.
"""
# Set padding areas within MEL (currently it is coded with the MEL code for <zero>).
mel_lengths = wav_lengths // self.mel_length_compression
for b in range(len(mel_lengths)):
actual_end = mel_lengths[b] + 1 # Due to the convolutional nature of how these tokens are generated, it would be best if the model predicts a token past the actual last token.
if actual_end < mel_input_tokens.shape[-1]:
mel_input_tokens[b, actual_end:] = self.stop_mel_token
return mel_input_tokens
def get_logits(self, speech_conditioning_inputs, text_inputs, text_head, mel_inputs, mel_head, aligned_head, return_latent=False):
if mel_inputs is not None:
emb = torch.cat([speech_conditioning_inputs, text_inputs, mel_inputs], dim=1)
else:
emb = torch.cat([speech_conditioning_inputs, text_inputs], dim=1)
gpt_out = self.gpt(inputs_embeds=emb, return_dict=True)
enc = gpt_out.last_hidden_state[:, 1:] # The first logit is tied to the speech_conditioning_input
enc = self.final_norm(enc)
if return_latent:
return enc[:, speech_conditioning_inputs.shape[1]:speech_conditioning_inputs.shape[1] + text_inputs.shape[1]], enc[:, -mel_inputs.shape[1]:]
text_logits = enc[:, :text_inputs.shape[1]]
text_logits = text_head(text_logits).permute(0,2,1)
mel_logits = enc[:, -mel_inputs.shape[1]:]
aligned_logits = aligned_head(mel_logits).permute(0,2,1)
mel_logits = mel_head(mel_logits).permute(0,2,1)
return text_logits, mel_logits, aligned_logits
def get_conditioning_latent(self, speech_conditioning_input):
speech_conditioning_input = speech_conditioning_input.unsqueeze(1) if len(speech_conditioning_input.shape) == 3 else speech_conditioning_input
conds = []
for j in range(speech_conditioning_input.shape[1]):
conds.append(self.conditioning_encoder(speech_conditioning_input[:, j]))
conds = torch.stack(conds, dim=1)
conds = conds.mean(dim=1).unsqueeze(1)
return conds
def forward(self, speech_conditioning_input, text_inputs, text_lengths, mel_codes, wav_lengths, aligned_codes, types=None, return_latent=False):
"""
Forward pass that uses both text and voice in either text conditioning mode or voice conditioning mode
(actuated by `text_first`).
speech_conditioning_input: MEL float tensor, (b,80,s)
text_inputs: long tensor, (b,t)
text_lengths: long tensor, (b,)
mel_inputs: long tensor, (b,m)
wav_lengths: long tensor, (b,)
aligned_codes: long tensor, (b,m/C) where C is some constant.
If return_latent is specified, loss & logits are not computed or returned. Only the predicted latents are returned.
"""
# Types are expressed by expanding the text embedding space.
if types is not None:
text_inputs = text_inputs * (1+types).unsqueeze(-1)
conds = self.get_conditioning_latent(speech_conditioning_input)
ac_expansion_factor = mel_codes.shape[-1] / aligned_codes.shape[-1]
aligned_codes = aligned_codes.repeat(1, ac_expansion_factor)
_, aligned_targets = self.build_aligned_inputs_and_targets(aligned_codes, 0, 0)
text_inputs = F.pad(text_inputs, (0,1), value=self.stop_text_token)
text_inputs, text_targets = self.build_aligned_inputs_and_targets(text_inputs, self.start_text_token, self.stop_text_token)
text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs)
mel_codes = self.set_mel_padding(mel_codes, wav_lengths)
mel_codes, mel_targets = self.build_aligned_inputs_and_targets(mel_codes, self.start_mel_token, self.stop_mel_token)
mel_inp = mel_codes
mel_emb = self.mel_embedding(mel_inp)
mel_emb = mel_emb + self.mel_pos_embedding(mel_codes)
text_logits, mel_logits, aligned_logits = self.get_logits(conds, text_emb, self.text_head, mel_emb, self.mel_head,
self.aligned_head, return_latent=return_latent)
if return_latent:
return mel_logits[:, :-2] # Despite the name, these are not logits. Strip off the two tokens added by this forward pass.
loss_text = F.cross_entropy(text_logits, text_targets.long())
loss_mel = F.cross_entropy(mel_logits, mel_targets.long())
loss_aligned = F.cross_entropy(aligned_logits, aligned_targets.long())
return loss_text.mean(), loss_mel.mean(), loss_aligned.mean(), mel_logits
def inference_speech(self, speech_conditioning_input, text_inputs, **hf_generate_kwargs):
if self.max_mel_tokens == -1: # Assume if this is the case, max_mel_tokens=-1 also
seq_length = 2002 # Arbitrary default.
else:
seq_length = self.max_mel_tokens + self.max_text_tokens + 2
if not hasattr(self, 'inference_model'):
# TODO: Decouple gpt_config from this inference model.
gpt_config = GPT2Config(vocab_size=self.max_mel_tokens,
n_positions=seq_length,
n_ctx=seq_length,
n_embd=self.model_dim,
n_layer=self.layers,
n_head=self.heads,
gradient_checkpointing=False,
use_cache=True)
self.inference_model = GPT2InferenceModel(gpt_config, self.gpt, self.mel_pos_embedding, self.mel_embedding, self.final_norm, self.mel_head)
self.gpt.wte = self.mel_embedding
text_inputs = F.pad(text_inputs, (0, 1), value=self.stop_text_token)
text_inputs, text_targets = self.build_aligned_inputs_and_targets(text_inputs, self.start_text_token, self.stop_text_token)
text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs)
speech_conditioning_input = speech_conditioning_input.unsqueeze(1) if len(speech_conditioning_input.shape) == 3 else speech_conditioning_input
conds = []
for j in range(speech_conditioning_input.shape[1]):
conds.append(self.conditioning_encoder(speech_conditioning_input[:, j]))
conds = torch.stack(conds, dim=1)
conds = conds.mean(dim=1).unsqueeze(1)
emb = torch.cat([conds, text_emb], dim=1)
self.inference_model.store_prior_emb(emb)
fake_inputs = torch.full((emb.shape[0], conds.shape[1]+emb.shape[1],), fill_value=1, dtype=torch.long, device=text_inputs.device)
fake_inputs[:,-1] = self.start_mel_token
gen = self.inference_model.generate(fake_inputs, bos_token_id=self.start_mel_token, pad_token_id=self.stop_mel_token, eos_token_id=self.stop_mel_token,
max_length=seq_length, return_dict_in_generate=True, **hf_generate_kwargs)
return gen.sequences[:, fake_inputs.shape[1]:]
@register_model
def register_unified_voice3(opt_net, opt):
return UnifiedVoice(**opt_get(opt_net, ['kwargs'], {}))
if __name__ == '__main__':
gpt = UnifiedVoice(model_dim=256, heads=4, max_conditioning_inputs=4, types=2)
mel = torch.randint(high=8192, size=(2,250))
ac = torch.randint(high=256, size=(2,250*1024//443))
l = gpt(torch.randn(2, 3, 80, 800),
torch.randint(high=256, size=(2,120)),
torch.tensor([32, 120]),
mel, torch.tensor([250*256,195*256]), ac,
types=torch.tensor([0, 1]))