DL-Art-School/codes/models/tecogan/teco_resgen.py
2020-12-18 09:24:31 -07:00

74 lines
2.7 KiB
Python

import os
import torch
import torch.nn as nn
import torchvision
from utils.util import sequential_checkpoint
from models.arch_util import ConvGnSilu, make_layer
class TecoResblock(nn.Module):
def __init__(self, nf):
super(TecoResblock, self).__init__()
self.nf = nf
self.conv1 = ConvGnSilu(nf, nf, kernel_size=3, norm=False, activation=True, bias=False, weight_init_factor=.1)
self.conv2 = ConvGnSilu(nf, nf, kernel_size=3, norm=False, activation=False, bias=False, weight_init_factor=.1)
def forward(self, x):
identity = x
x = self.conv1(x)
x = self.conv2(x)
return identity + x
class TecoUpconv(nn.Module):
def __init__(self, nf, scale):
super(TecoUpconv, self).__init__()
self.nf = nf
self.scale = scale
self.conv1 = ConvGnSilu(nf, nf, kernel_size=3, norm=False, activation=True, bias=True)
self.conv2 = ConvGnSilu(nf, nf, kernel_size=3, norm=False, activation=True, bias=True)
self.conv3 = ConvGnSilu(nf, nf, kernel_size=3, norm=False, activation=True, bias=True)
self.final_conv = ConvGnSilu(nf, 3, kernel_size=1, norm=False, activation=False, bias=False)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = nn.functional.interpolate(x, scale_factor=self.scale, mode="nearest")
x = self.conv3(x)
return self.final_conv(x)
# Extremely simple resnet based generator that is very similar to the one used in the tecogan paper.
# Main differences:
# - Uses SiLU instead of ReLU
# - Reference input is in HR space (just makes more sense)
# - Doesn't use transposed convolutions - just uses interpolation instead.
# - Upsample block is slightly more complicated.
class TecoGen(nn.Module):
def __init__(self, nf, scale):
super(TecoGen, self).__init__()
self.nf = nf
self.scale = scale
fea_conv = ConvGnSilu(6, nf, kernel_size=7, stride=self.scale, bias=True, norm=False, activation=True)
res_layers = [TecoResblock(nf) for i in range(15)]
upsample = TecoUpconv(nf, scale)
everything = [fea_conv] + res_layers + [upsample]
self.core = nn.Sequential(*everything)
def forward(self, x, ref=None):
x = nn.functional.interpolate(x, scale_factor=self.scale, mode="bicubic")
if ref is None:
ref = torch.zeros_like(x)
join = torch.cat([x, ref], dim=1)
join = sequential_checkpoint(self.core, 6, join)
self.join = join.detach().clone() + .5
return x + join
def visual_dbg(self, step, path):
torchvision.utils.save_image(self.join.cpu().float(), os.path.join(path, "%i_join.png" % (step,)))
def get_debug_values(self, step, net_name):
return {'branch_std': self.join.std()}