DL-Art-School/codes/models/archs/byol/byol_structural.py
James Betker b905b108da Large cleanup
Removed a lot of old code that I won't be touching again. Refactored some
code elements into more logical places.
2020-12-18 09:10:44 -07:00

181 lines
6.8 KiB
Python

import copy
import torch
import torch.nn.functional as F
from torch import nn
from data.byol_attachment import reconstructed_shared_regions
from models.archs.byol.byol_model_wrapper import singleton, EMA, get_module_device, set_requires_grad, \
update_moving_average
from utils.util import checkpoint
# loss function
def structural_loss_fn(x, y):
# Combine the structural dimensions into the batch dimension, then compute the "normal" BYOL loss.
x = x.permute(0,2,3,1).flatten(0,2)
y = y.permute(0,2,3,1).flatten(0,2)
x = F.normalize(x, dim=-1, p=2)
y = F.normalize(y, dim=-1, p=2)
return 2 - 2 * (x * y).sum(dim=-1)
class StructuralTail(nn.Module):
def __init__(self, channels, projection_size, hidden_size=512):
super().__init__()
self.net = nn.Sequential(
nn.Conv2d(channels, hidden_size, kernel_size=1),
nn.BatchNorm2d(hidden_size),
nn.ReLU(inplace=True),
nn.Conv2d(hidden_size, projection_size, kernel_size=1),
)
def forward(self, x):
return self.net(x)
# a wrapper class for the base neural network
# will manage the interception of the hidden layer output
# and pipe it into the projecter and predictor nets
class NetWrapper(nn.Module):
def __init__(self, net, projection_size, projection_hidden_size, layer=-2):
super().__init__()
self.net = net
self.layer = layer
self.projector = None
self.projection_size = projection_size
self.projection_hidden_size = projection_hidden_size
self.hidden = None
self.hook_registered = False
def _find_layer(self):
if type(self.layer) == str:
modules = dict([*self.net.named_modules()])
return modules.get(self.layer, None)
elif type(self.layer) == int:
children = [*self.net.children()]
return children[self.layer]
return None
def _hook(self, _, __, output):
self.hidden = output
def _register_hook(self):
layer = self._find_layer()
assert layer is not None, f'hidden layer ({self.layer}) not found'
handle = layer.register_forward_hook(self._hook)
self.hook_registered = True
@singleton('projector')
def _get_projector(self, hidden):
projector = StructuralTail(hidden.shape[1], self.projection_size, self.projection_hidden_size)
return projector.to(hidden)
def get_representation(self, x):
if self.layer == -1:
return self.net(x)
if not self.hook_registered:
self._register_hook()
unused = self.net(x)
hidden = self.hidden
self.hidden = None
assert hidden is not None, f'hidden layer {self.layer} never emitted an output'
return hidden
def forward(self, x):
representation = self.get_representation(x)
projector = self._get_projector(representation)
projection = checkpoint(projector, representation)
return projection
class StructuralBYOL(nn.Module):
def __init__(
self,
net,
image_size,
hidden_layer=-2,
projection_size=256,
projection_hidden_size=512,
moving_average_decay=0.99,
use_momentum=True,
pretrained_state_dict=None,
freeze_until=0
):
super().__init__()
if pretrained_state_dict:
net.load_state_dict(torch.load(pretrained_state_dict), strict=True)
self.freeze_until = freeze_until
self.frozen = False
if self.freeze_until > 0:
for p in net.parameters():
p.DO_NOT_TRAIN = True
self.frozen = True
self.online_encoder = NetWrapper(net, projection_size, projection_hidden_size, layer=hidden_layer)
self.use_momentum = use_momentum
self.target_encoder = None
self.target_ema_updater = EMA(moving_average_decay)
self.online_predictor = StructuralTail(projection_size, projection_size, projection_hidden_size)
# get device of network and make wrapper same device
device = get_module_device(net)
self.to(device)
# send a mock image tensor to instantiate singleton parameters
self.forward(torch.randn(2, 3, image_size, image_size, device=device),
torch.randn(2, 3, image_size, image_size, device=device), None)
@singleton('target_encoder')
def _get_target_encoder(self):
target_encoder = copy.deepcopy(self.online_encoder)
set_requires_grad(target_encoder, False)
return target_encoder
def reset_moving_average(self):
del self.target_encoder
self.target_encoder = None
def update_for_step(self, step, __):
assert self.use_momentum, 'you do not need to update the moving average, since you have turned off momentum for the target encoder'
assert self.target_encoder is not None, 'target encoder has not been created yet'
update_moving_average(self.target_ema_updater, self.target_encoder, self.online_encoder)
if self.frozen and self.freeze_until < step:
print("Unfreezing model weights. Let the latent training commence..")
for p in self.online_encoder.net.parameters():
del p.DO_NOT_TRAIN
self.frozen = False
def forward(self, image_one, image_two, similar_region_params):
online_proj_one = self.online_encoder(image_one)
online_proj_two = self.online_encoder(image_two)
online_pred_one = self.online_predictor(online_proj_one)
online_pred_two = self.online_predictor(online_proj_two)
with torch.no_grad():
target_encoder = self._get_target_encoder() if self.use_momentum else self.online_encoder
target_proj_one = target_encoder(image_one).detach()
target_proj_two = target_encoder(image_two).detach()
# In the structural BYOL, only the regions of the source image that are shared between the two augments are
# compared. These regions can be extracted from the latents using `reconstruct_shared_regions`.
if similar_region_params is not None:
online_pred_one, target_proj_two = reconstructed_shared_regions(online_pred_one, target_proj_two, similar_region_params)
loss_one = structural_loss_fn(online_pred_one, target_proj_two.detach())
if similar_region_params is not None:
online_pred_two, target_proj_one = reconstructed_shared_regions(online_pred_two, target_proj_one, similar_region_params)
loss_two = structural_loss_fn(online_pred_two, target_proj_one.detach())
loss = loss_one + loss_two
return loss.mean()
def get_projection(self, image):
enc = self.online_encoder(image)
proj = self.online_predictor(enc)
return enc, proj