DL-Art-School/codes/scripts/extract_square_images.py
2020-11-13 11:04:03 -07:00

81 lines
2.5 KiB
Python

"""A multi-thread tool to crop large images to sub-images for faster IO."""
import os
import os.path as osp
import numpy as np
import cv2
from PIL import Image
import data.util as data_util # noqa: E402
import torch.utils.data as data
from tqdm import tqdm
import torch
def main():
split_img = False
opt = {}
opt['n_thread'] = 20
opt['compression_level'] = 90 # JPEG compression quality rating.
# CV_IMWRITE_PNG_COMPRESSION from 0 to 9. A higher value means a smaller size and longer
# compression time. If read raw images during training, use 0 for faster IO speed.
opt['dest'] = 'file'
opt['input_folder'] = 'F:\\4k6k\\datasets\\ns_images\\imagesets\\imgset2'
opt['save_folder'] = 'F:\\4k6k\\datasets\\ns_images\\imagesets\\imgset_raw_2'
opt['imgsize'] = 1024
save_folder = opt['save_folder']
if not osp.exists(save_folder):
os.makedirs(save_folder)
print('mkdir [{:s}] ...'.format(save_folder))
extract_single(opt)
class TiledDataset(data.Dataset):
def __init__(self, opt):
self.opt = opt
input_folder = opt['input_folder']
self.images = data_util._get_paths_from_images(input_folder)
def __getitem__(self, index):
return self.get(index)
def get(self, index):
path = self.images[index]
basename = osp.basename(path)
img = cv2.imread(path, cv2.IMREAD_UNCHANGED)
# Greyscale not supported.
if len(img.shape) == 2:
return None
h, w, c = img.shape
# Uncomment to filter any image that doesnt meet a threshold size.
if min(h,w) < 1024:
return None
# We must convert the image into a square.
dim = min(h, w)
# Crop the image so that only the center is left, since this is often the most salient part of the image.
img = img[(h - dim) // 2:dim + (h - dim) // 2, (w - dim) // 2:dim + (w - dim) // 2, :]
img = cv2.resize(img, (self.opt['imgsize'], self.opt['imgsize']), interpolation=cv2.INTER_AREA)
cv2.imwrite(osp.join(self.opt['save_folder'], basename + ".jpg"), img, [cv2.IMWRITE_JPEG_QUALITY, self.opt['compression_level']])
return None
def __len__(self):
return len(self.images)
def identity(x):
return x
def extract_single(opt):
dataset = TiledDataset(opt)
dataloader = data.DataLoader(dataset, num_workers=opt['n_thread'], collate_fn=identity)
tq = tqdm(dataloader)
for spl_imgs in tq:
pass
if __name__ == '__main__':
main()