ce4613ecb9
Sweet!
153 lines
6.9 KiB
Python
153 lines
6.9 KiB
Python
from torch.utils import data
|
|
from data.chunk_with_reference import ChunkWithReference
|
|
from data.image_corruptor import ImageCorruptor
|
|
import os
|
|
from bisect import bisect_left
|
|
import cv2
|
|
import torch
|
|
import numpy as np
|
|
import torchvision.transforms.functional as F
|
|
|
|
|
|
# Builds a dataset composed of a set of folders. Each folder represents a single high resolution image that has been
|
|
# chunked into patches of fixed size. A reference image is included as well as a list of center points for each patch.
|
|
class SingleImageDataset(data.Dataset):
|
|
|
|
def __init__(self, opt):
|
|
self.corruptor = ImageCorruptor(opt)
|
|
self.target_hq_size = opt['target_size'] if 'target_size' in opt.keys() else None
|
|
self.multiple = opt['force_multiple'] if 'force_multiple' in opt.keys() else 1
|
|
self.for_eval = opt['eval'] if 'eval' in opt.keys() else False
|
|
self.scale = opt['scale'] if not self.for_eval else 1
|
|
self.paths = opt['paths']
|
|
if not isinstance(self.paths, list):
|
|
self.paths = [self.paths]
|
|
self.weights = [1]
|
|
else:
|
|
self.weights = opt['weights']
|
|
|
|
# See if there is a cached directory listing and use that rather than re-scanning everything. This will greatly
|
|
# reduce startup costs.
|
|
self.chunks = []
|
|
for path, weight in zip(self.paths, self.weights):
|
|
cache_path = os.path.join(path, 'cache.pth')
|
|
if os.path.exists(cache_path):
|
|
chunks = torch.load(cache_path)
|
|
else:
|
|
chunks = [ChunkWithReference(opt, d) for d in os.scandir(path) if d.is_dir()]
|
|
torch.save(chunks, cache_path)
|
|
for w in range(weight):
|
|
self.chunks.extend(chunks)
|
|
|
|
# Indexing this dataset is tricky. Aid it by having a sorted list of starting indices for each chunk.
|
|
start = 0
|
|
self.starting_indices = []
|
|
for c in chunks:
|
|
self.starting_indices.append(start)
|
|
start += len(c)
|
|
self.len = start
|
|
|
|
|
|
def resize_point(self, point, orig_dim, new_dim):
|
|
oh, ow = orig_dim
|
|
nh, nw = new_dim
|
|
dh, dw = float(nh) / float(oh), float(nw) / float(ow)
|
|
point = int(dh * float(point[0])), int(dw * float(point[1]))
|
|
return point
|
|
|
|
def __getitem__(self, item):
|
|
chunk_ind = bisect_left(self.starting_indices, item)
|
|
chunk_ind = chunk_ind if chunk_ind < len(self.starting_indices) and self.starting_indices[chunk_ind] == item else chunk_ind-1
|
|
hq, hq_ref, hq_center, hq_mask, path = self.chunks[chunk_ind][item-self.starting_indices[chunk_ind]]
|
|
|
|
# Enforce size constraints
|
|
h, w, _ = hq.shape
|
|
if self.target_hq_size is not None and self.target_hq_size != h:
|
|
# It is assumed that the target size is a square.
|
|
target_size = (self.target_hq_size, self.target_hq_size)
|
|
hq = cv2.resize(hq, target_size, interpolation=cv2.INTER_LINEAR)
|
|
hq_ref = cv2.resize(hq_ref, target_size, interpolation=cv2.INTER_LINEAR)
|
|
hq_mask = cv2.resize(hq_mask, target_size, interpolation=cv2.INTER_LINEAR)
|
|
hq_center = self.resize_point(hq_center, (h, w), target_size)
|
|
h, w = self.target_hq_size, self.target_hq_size
|
|
hq_multiple = self.multiple * self.scale # Multiple must apply to LQ image.
|
|
if h % hq_multiple != 0 or w % hq_multiple != 0:
|
|
h, w = (h - h % hq_multiple), (w - w % hq_multiple)
|
|
hq_center = self.resize_point(hq_center, hq.shape[:1], (h, w))
|
|
hq = hq[:h, :w, :]
|
|
hq_ref = hq_ref[:h, :w, :]
|
|
hq_mask = hq_mask[:h, :w, :]
|
|
|
|
# Synthesize the LQ image
|
|
if self.for_eval:
|
|
lq, lq_ref = hq, hq_ref
|
|
else:
|
|
lq = cv2.resize(hq, (h // self.scale, w // self.scale), interpolation=cv2.INTER_LINEAR)
|
|
lq_ref = cv2.resize(hq_ref, (h // self.scale, w // self.scale), interpolation=cv2.INTER_LINEAR)
|
|
lq_mask = cv2.resize(hq_mask, (h // self.scale, w // self.scale), interpolation=cv2.INTER_LINEAR)
|
|
lq_center = self.resize_point(hq_center, (h, w), lq.shape[:2])
|
|
|
|
# Corrupt the LQ image
|
|
lq = self.corruptor.corrupt_images([lq])[0]
|
|
|
|
# Convert to torch tensor
|
|
hq = torch.from_numpy(np.ascontiguousarray(np.transpose(hq, (2, 0, 1)))).float()
|
|
hq_ref = torch.from_numpy(np.ascontiguousarray(np.transpose(hq_ref, (2, 0, 1)))).float()
|
|
hq_mask = torch.from_numpy(np.ascontiguousarray(hq_mask)).unsqueeze(dim=0)
|
|
hq_ref = torch.cat([hq_ref, hq_mask], dim=0)
|
|
lq = torch.from_numpy(np.ascontiguousarray(np.transpose(lq, (2, 0, 1)))).float()
|
|
lq_ref = torch.from_numpy(np.ascontiguousarray(np.transpose(lq_ref, (2, 0, 1)))).float()
|
|
lq_mask = torch.from_numpy(np.ascontiguousarray(lq_mask)).unsqueeze(dim=0)
|
|
lq_ref = torch.cat([lq_ref, lq_mask], dim=0)
|
|
|
|
return {'LQ': lq, 'GT': hq, 'gt_fullsize_ref': hq_ref, 'lq_fullsize_ref': lq_ref,
|
|
'lq_center': lq_center, 'gt_center': hq_center,
|
|
'LQ_path': path, 'GT_path': path}
|
|
|
|
def __len__(self):
|
|
return self.len
|
|
|
|
|
|
self.corruptor = ImageCorruptor(opt)
|
|
self.target_hq_size = opt['target_size'] if 'target_size' in opt.keys() else None
|
|
self.multiple = opt['force_multiple'] if 'force_multiple' in opt.keys() else 1
|
|
self.for_eval = opt['eval'] if 'eval' in opt.keys() else False
|
|
self.scale = opt['scale'] if not self.for_eval else 1
|
|
self.paths = opt['paths']
|
|
if not isinstance(self.paths, list):
|
|
self.paths = [self.paths]
|
|
self.weights = [1]
|
|
else:
|
|
self.weights = opt['weights']
|
|
for path, weight in zip(self.paths, self.weights):
|
|
chunks = [ChunkWithReference(opt, d) for d in os.scandir(path) if d.is_dir()]
|
|
for w in range(weight):
|
|
self.chunks.extend(chunks)
|
|
|
|
if __name__ == '__main__':
|
|
opt = {
|
|
'name': 'amalgam',
|
|
'paths': ['F:\\4k6k\\datasets\\images\\flickr\\testbed'],
|
|
'weights': [1],
|
|
'target_size': 128,
|
|
'force_multiple': 32,
|
|
'scale': 2,
|
|
'eval': False,
|
|
'fixed_corruptions': ['jpeg'],
|
|
'random_corruptions': ['color_quantization', 'gaussian_blur', 'motion_blur', 'smooth_blur', 'noise', 'saturation'],
|
|
'num_corrupts_per_image': 1
|
|
}
|
|
|
|
ds = SingleImageDataset(opt)
|
|
import os
|
|
os.makedirs("debug", exist_ok=True)
|
|
for i in range(0, len(ds)):
|
|
o = ds[i]
|
|
for k, v in o.items():
|
|
if 'path' not in k and 'center' not in k:
|
|
#if 'full' in k:
|
|
#masked = v[:3, :, :] * v[3]
|
|
#torchvision.utils.save_image(masked.unsqueeze(0), "debug/%i_%s_masked.png" % (i, k))
|
|
#v = v[:3, :, :]
|
|
import torchvision
|
|
torchvision.utils.save_image(v.unsqueeze(0), "debug/%i_%s.png" % (i, k)) |