DL-Art-School/codes/models/gpt_voice/gpt_tts.py
2021-07-27 20:33:30 -06:00

77 lines
3.3 KiB
Python

import torch
import torch.nn as nn
import torch.nn.functional as F
from models.arch_util import ConvGnSilu
from models.tacotron2.taco_utils import get_mask_from_lengths
from models.tacotron2.text import symbols
from models.gpt_voice.min_gpt import GPT, GPTConfig
from trainer.networks import register_model
class GptTts(nn.Module):
def __init__(self):
super().__init__()
number_symbols = len(symbols)
model_dim = 512
max_symbols_per_phrase = 200
max_mel_frames = 900
mel_dim=80
self.text_embedding = nn.Embedding(number_symbols, model_dim)
self.mel_encoder = nn.Sequential(ConvGnSilu(mel_dim, model_dim//2, kernel_size=3, convnd=nn.Conv1d),
ConvGnSilu(model_dim//2, model_dim, kernel_size=3, stride=2, convnd=nn.Conv1d))
self.text_tags = nn.Parameter(torch.randn(1, 1, model_dim)/256.0)
self.audio_tags = nn.Parameter(torch.randn(1, 1, model_dim)/256.0)
self.gpt = GPT(GPTConfig(max_symbols_per_phrase+max_mel_frames//2, n_embd=model_dim, n_head=8))
self.gate_head = nn.Sequential(ConvGnSilu(model_dim, model_dim, kernel_size=5, convnd=nn.Conv1d),
nn.Upsample(scale_factor=2, mode='nearest'),
ConvGnSilu(model_dim, model_dim//2, kernel_size=5, convnd=nn.Conv1d),
nn.Conv1d(model_dim//2, 1, kernel_size=1))
self.mel_head = nn.Sequential(ConvGnSilu(model_dim, model_dim, kernel_size=5, convnd=nn.Conv1d),
nn.Upsample(scale_factor=2, mode='nearest'),
ConvGnSilu(model_dim, model_dim//2, kernel_size=5, convnd=nn.Conv1d),
ConvGnSilu(model_dim//2, model_dim//2, kernel_size=5, convnd=nn.Conv1d),
ConvGnSilu(model_dim//2, mel_dim, kernel_size=1, activation=False, norm=False, convnd=nn.Conv1d))
def forward(self, text_inputs, mel_targets, output_lengths):
# Pad mel_targets to be a multiple of 2
padded = mel_targets.shape[-1] % 2 != 0
if padded:
mel_targets = F.pad(mel_targets, (0,1))
text_emb = self.text_embedding(text_inputs)
text_emb = text_emb + self.text_tags
mel_emb = self.mel_encoder(mel_targets).permute(0,2,1)
mel_emb = mel_emb + self.audio_tags
emb = torch.cat([text_emb, mel_emb], dim=1)
enc = self.gpt(emb)
mel_portion = enc[:, text_emb.shape[1]:].permute(0,2,1)
gates = self.gate_head(mel_portion).squeeze(1)
mel_pred = self.mel_head(mel_portion)
# Mask portions of output which we don't need to predict.
mask = ~get_mask_from_lengths(output_lengths, mel_pred.shape[-1])
mask = mask.unsqueeze(1).repeat(1, mel_pred.shape[1], 1)
mel_pred.data.masked_fill_(mask, 0)
gates.data.masked_fill_(mask[:, 0, :], 1e3)
if padded:
mel_pred = mel_pred[:, :, :-1]
gates = gates[:, :-1]
return mel_pred, gates
@register_model
def register_gpt_tts(opt_net, opt):
return GptTts()
if __name__ == '__main__':
gpt = GptTts()
m, g = gpt(torch.randint(high=24, size=(2,60)),
torch.randn(2,80,747),
torch.tensor([600,747]))
print(m.shape)
print(g.shape)