DL-Art-School/codes/models/archs/rcan.py
James Betker aeaf185314 Add RCAN
2020-09-27 16:00:41 -06:00

221 lines
7.3 KiB
Python

import torch.nn as nn
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.checkpoint import checkpoint
from torch.autograd import Variable
def default_conv(in_channels, out_channels, kernel_size, bias=True):
return nn.Conv2d(
in_channels, out_channels, kernel_size,
padding=(kernel_size//2), bias=bias)
class MeanShift(nn.Conv2d):
def __init__(self, rgb_range, rgb_mean, rgb_std, sign=-1):
super(MeanShift, self).__init__(3, 3, kernel_size=1)
std = torch.Tensor(rgb_std)
self.weight.data = torch.eye(3).view(3, 3, 1, 1)
self.weight.data.div_(std.view(3, 1, 1, 1))
self.bias.data = sign * rgb_range * torch.Tensor(rgb_mean)
self.bias.data.div_(std)
self.requires_grad = False
class BasicBlock(nn.Sequential):
def __init__(
self, in_channels, out_channels, kernel_size, stride=1, bias=False,
bn=True, act=nn.ReLU(True)):
m = [nn.Conv2d(
in_channels, out_channels, kernel_size,
padding=(kernel_size//2), stride=stride, bias=bias)
]
if bn: m.append(nn.BatchNorm2d(out_channels))
if act is not None: m.append(act)
super(BasicBlock, self).__init__(*m)
class ResBlock(nn.Module):
def __init__(
self, conv, n_feat, kernel_size,
bias=True, bn=False, act=nn.ReLU(True), res_scale=1):
super(ResBlock, self).__init__()
m = []
for i in range(2):
m.append(conv(n_feat, n_feat, kernel_size, bias=bias))
if bn: m.append(nn.BatchNorm2d(n_feat))
if i == 0: m.append(act)
self.body = nn.Sequential(*m)
self.res_scale = res_scale
def forward(self, x):
res = self.body(x).mul(self.res_scale)
res += x
return res
class Upsampler(nn.Sequential):
def __init__(self, conv, scale, n_feat, bn=False, act=False, bias=True):
m = []
if (scale & (scale - 1)) == 0: # Is scale = 2^n?
for _ in range(int(math.log(scale, 2))):
m.append(conv(n_feat, 4 * n_feat, 3, bias))
m.append(nn.PixelShuffle(2))
if bn: m.append(nn.BatchNorm2d(n_feat))
if act: m.append(act())
elif scale == 3:
m.append(conv(n_feat, 9 * n_feat, 3, bias))
m.append(nn.PixelShuffle(3))
if bn: m.append(nn.BatchNorm2d(n_feat))
if act: m.append(act())
else:
raise NotImplementedError
super(Upsampler, self).__init__(*m)
def make_model(args, parent=False):
return RCAN(args)
## Channel Attention (CA) Layer
class CALayer(nn.Module):
def __init__(self, channel, reduction=16):
super(CALayer, self).__init__()
# global average pooling: feature --> point
self.avg_pool = nn.AdaptiveAvgPool2d(1)
# feature channel downscale and upscale --> channel weight
self.conv_du = nn.Sequential(
nn.Conv2d(channel, channel // reduction, 1, padding=0, bias=True),
nn.ReLU(inplace=True),
nn.Conv2d(channel // reduction, channel, 1, padding=0, bias=True),
nn.Sigmoid()
)
def forward(self, x):
y = self.avg_pool(x)
y = self.conv_du(y)
return x * y
## Residual Channel Attention Block (RCAB)
class RCAB(nn.Module):
def __init__(
self, conv, n_feat, kernel_size, reduction,
bias=True, bn=False, act=nn.ReLU(True), res_scale=1):
super(RCAB, self).__init__()
modules_body = []
for i in range(2):
modules_body.append(conv(n_feat, n_feat, kernel_size, bias=bias))
if bn: modules_body.append(nn.BatchNorm2d(n_feat))
if i == 0: modules_body.append(act)
modules_body.append(CALayer(n_feat, reduction))
self.body = nn.Sequential(*modules_body)
self.res_scale = res_scale
def forward(self, x):
res = self.body(x)
# res = self.body(x).mul(self.res_scale)
res += x
return res
## Residual Group (RG)
class ResidualGroup(nn.Module):
def __init__(self, conv, n_feat, kernel_size, reduction, act, res_scale, n_resblocks):
super(ResidualGroup, self).__init__()
modules_body = []
modules_body = [
RCAB(
conv, n_feat, kernel_size, reduction, bias=True, bn=False, act=nn.ReLU(True), res_scale=1) \
for _ in range(n_resblocks)]
modules_body.append(conv(n_feat, n_feat, kernel_size))
self.body = nn.Sequential(*modules_body)
def forward(self, x):
res = self.body(x)
res += x
return res
## Residual Channel Attention Network (RCAN)
class RCAN(nn.Module):
def __init__(self, args, conv=default_conv):
super(RCAN, self).__init__()
n_resgroups = args.n_resgroups
n_resblocks = args.n_resblocks
n_feats = args.n_feats
kernel_size = 3
reduction = args.reduction
scale = args.scale
act = nn.ReLU(True)
# RGB mean for DIV2K
rgb_mean = (0.4488, 0.4371, 0.4040)
rgb_std = (1.0, 1.0, 1.0)
self.sub_mean = MeanShift(args.rgb_range, rgb_mean, rgb_std)
# define head module
modules_head = [conv(args.n_colors, n_feats, kernel_size)]
# define body module
modules_body = [
ResidualGroup(
conv, n_feats, kernel_size, reduction, act=act, res_scale=args.res_scale, n_resblocks=n_resblocks) \
for _ in range(n_resgroups)]
modules_body.append(conv(n_feats, n_feats, kernel_size))
# define tail module
modules_tail = [
Upsampler(conv, scale, n_feats, act=False),
conv(n_feats, args.n_colors, kernel_size)]
self.add_mean = MeanShift(args.rgb_range, rgb_mean, rgb_std, 1)
self.head = nn.Sequential(*modules_head)
self.body = nn.Sequential(*modules_body)
self.tail = nn.Sequential(*modules_tail)
def forward(self, x):
x = self.sub_mean(x)
x = self.head(x)
res = self.body(x)
res += x
x = self.tail(res)
x = self.add_mean(x)
return x
def load_state_dict(self, state_dict, strict=False):
own_state = self.state_dict()
for name, param in state_dict.items():
if name in own_state:
if isinstance(param, nn.Parameter):
param = param.data
try:
own_state[name].copy_(param)
except Exception:
if name.find('tail') >= 0:
print('Replace pre-trained upsampler to new one...')
else:
raise RuntimeError('While copying the parameter named {}, '
'whose dimensions in the model are {} and '
'whose dimensions in the checkpoint are {}.'
.format(name, own_state[name].size(), param.size()))
elif strict:
if name.find('tail') == -1:
raise KeyError('unexpected key "{}" in state_dict'
.format(name))
if strict:
missing = set(own_state.keys()) - set(state_dict.keys())
if len(missing) > 0:
raise KeyError('missing keys in state_dict: "{}"'.format(missing))