292 lines
13 KiB
Python
292 lines
13 KiB
Python
import numpy as np
|
|
import torch
|
|
from torch import nn as nn
|
|
|
|
import models.archs.srflow_orig.Split
|
|
from models.archs.srflow_orig import flow, thops
|
|
from models.archs.srflow_orig.Split import Split2d
|
|
from models.archs.srflow_orig.glow_arch import f_conv2d_bias
|
|
from models.archs.srflow_orig.FlowStep import FlowStep
|
|
from utils.util import opt_get, checkpoint
|
|
|
|
|
|
class FlowUpsamplerNet(nn.Module):
|
|
def __init__(self, image_shape, hidden_channels, K, L=None,
|
|
actnorm_scale=1.0,
|
|
flow_permutation=None,
|
|
flow_coupling="affine",
|
|
LU_decomposed=False, opt=None):
|
|
|
|
super().__init__()
|
|
|
|
self.layers = nn.ModuleList()
|
|
self.output_shapes = []
|
|
self.L = opt_get(opt, ['networks', 'generator','flow', 'L'])
|
|
self.K = opt_get(opt, ['networks', 'generator','flow', 'K'])
|
|
self.patch_sz = opt_get(opt, ['networks', 'generator', 'flow', 'patch_size'], 160)
|
|
if isinstance(self.K, int):
|
|
self.K = [K for K in [K, ] * (self.L + 1)]
|
|
|
|
self.opt = opt
|
|
H, W, self.C = image_shape
|
|
self.check_image_shape()
|
|
|
|
if opt_get(self.opt, ['networks', 'generator', 'flow_scale']) == 16:
|
|
self.levelToName = {
|
|
0: 'fea_up16',
|
|
1: 'fea_up8',
|
|
2: 'fea_up4',
|
|
3: 'fea_up2',
|
|
4: 'fea_up1',
|
|
}
|
|
|
|
if opt_get(self.opt, ['networks', 'generator', 'flow_scale']) == 8:
|
|
self.levelToName = {
|
|
0: 'fea_up8',
|
|
1: 'fea_up4',
|
|
2: 'fea_up2',
|
|
3: 'fea_up1',
|
|
4: 'fea_up0'
|
|
}
|
|
|
|
elif opt_get(self.opt, ['networks', 'generator', 'flow_scale']) == 4:
|
|
self.levelToName = {
|
|
0: 'fea_up4',
|
|
1: 'fea_up2',
|
|
2: 'fea_up1',
|
|
3: 'fea_up0',
|
|
4: 'fea_up-1'
|
|
}
|
|
|
|
affineInCh = self.get_affineInCh(opt_get)
|
|
flow_permutation = self.get_flow_permutation(flow_permutation, opt)
|
|
|
|
normOpt = opt_get(opt, ['networks', 'generator','flow', 'norm'])
|
|
|
|
conditional_channels = {}
|
|
n_rrdb = self.get_n_rrdb_channels(opt, opt_get)
|
|
n_bypass_channels = opt_get(opt, ['networks', 'generator','flow', 'levelConditional', 'n_channels'])
|
|
conditional_channels[0] = n_rrdb
|
|
for level in range(1, self.L + 1):
|
|
# Level 1 gets conditionals from 2, 3, 4 => L - level
|
|
# Level 2 gets conditionals from 3, 4
|
|
# Level 3 gets conditionals from 4
|
|
# Level 4 gets conditionals from None
|
|
n_bypass = 0 if n_bypass_channels is None else (self.L - level) * n_bypass_channels
|
|
conditional_channels[level] = n_rrdb + n_bypass
|
|
|
|
# Upsampler
|
|
for level in range(1, self.L + 1):
|
|
# 1. Squeeze
|
|
H, W = self.arch_squeeze(H, W)
|
|
|
|
# 2. K FlowStep
|
|
self.arch_additionalFlowAffine(H, LU_decomposed, W, actnorm_scale, hidden_channels, opt)
|
|
self.arch_FlowStep(H, self.K[level], LU_decomposed, W, actnorm_scale, affineInCh, flow_coupling,
|
|
flow_permutation,
|
|
hidden_channels, normOpt, opt, opt_get,
|
|
n_conditinal_channels=conditional_channels[level])
|
|
# Split
|
|
self.arch_split(H, W, level, self.L, opt, opt_get)
|
|
|
|
if opt_get(opt, ['networks', 'generator','flow', 'split', 'enable']):
|
|
self.f = f_conv2d_bias(affineInCh, 2 * 3 * 64 // 2 // 2)
|
|
else:
|
|
self.f = f_conv2d_bias(affineInCh, 2 * 3 * 64)
|
|
|
|
self.H = H
|
|
self.W = W
|
|
self.scaleH = self.patch_sz / H
|
|
self.scaleW = self.patch_sz / W
|
|
|
|
def get_n_rrdb_channels(self, opt, opt_get):
|
|
blocks = opt_get(opt, ['networks', 'generator','flow', 'stackRRDB', 'blocks'])
|
|
n_rrdb = 64 if blocks is None else (len(blocks) + 1) * 64
|
|
return n_rrdb
|
|
|
|
def arch_FlowStep(self, H, K, LU_decomposed, W, actnorm_scale, affineInCh, flow_coupling, flow_permutation,
|
|
hidden_channels, normOpt, opt, opt_get, n_conditinal_channels=None):
|
|
condAff = self.get_condAffSetting(opt, opt_get)
|
|
if condAff is not None:
|
|
condAff['in_channels_rrdb'] = n_conditinal_channels
|
|
|
|
for k in range(K):
|
|
position_name = self.get_position_name(H, opt_get(self.opt, ['networks', 'generator', 'flow_scale']))
|
|
if normOpt: normOpt['position'] = position_name
|
|
|
|
self.layers.append(
|
|
FlowStep(in_channels=self.C,
|
|
hidden_channels=hidden_channels,
|
|
actnorm_scale=actnorm_scale,
|
|
flow_permutation=flow_permutation,
|
|
flow_coupling=flow_coupling,
|
|
acOpt=condAff,
|
|
position=position_name,
|
|
LU_decomposed=LU_decomposed, opt=opt, idx=k, normOpt=normOpt))
|
|
self.output_shapes.append(
|
|
[-1, self.C, H, W])
|
|
|
|
def get_condAffSetting(self, opt, opt_get):
|
|
condAff = opt_get(opt, ['networks', 'generator','flow', 'condAff']) or None
|
|
condAff = opt_get(opt, ['networks', 'generator','flow', 'condFtAffine']) or condAff
|
|
return condAff
|
|
|
|
def arch_split(self, H, W, L, levels, opt, opt_get):
|
|
correct_splits = opt_get(opt, ['networks', 'generator','flow', 'split', 'correct_splits'], False)
|
|
correction = 0 if correct_splits else 1
|
|
if opt_get(opt, ['networks', 'generator','flow', 'split', 'enable']) and L < levels - correction:
|
|
logs_eps = opt_get(opt, ['networks', 'generator','flow', 'split', 'logs_eps']) or 0
|
|
consume_ratio = opt_get(opt, ['networks', 'generator','flow', 'split', 'consume_ratio']) or 0.5
|
|
position_name = self.get_position_name(H, opt_get(self.opt, ['networks', 'generator', 'flow_scale']))
|
|
position = position_name if opt_get(opt, ['networks', 'generator','flow', 'split', 'conditional']) else None
|
|
cond_channels = opt_get(opt, ['networks', 'generator','flow', 'split', 'cond_channels'])
|
|
cond_channels = 0 if cond_channels is None else cond_channels
|
|
|
|
t = opt_get(opt, ['networks', 'generator','flow', 'split', 'type'], 'Split2d')
|
|
|
|
if t == 'Split2d':
|
|
split = models.archs.srflow_orig.Split.Split2d(num_channels=self.C, logs_eps=logs_eps, position=position,
|
|
cond_channels=cond_channels, consume_ratio=consume_ratio, opt=opt)
|
|
self.layers.append(split)
|
|
self.output_shapes.append([-1, split.num_channels_pass, H, W])
|
|
self.C = split.num_channels_pass
|
|
|
|
def arch_additionalFlowAffine(self, H, LU_decomposed, W, actnorm_scale, hidden_channels, opt):
|
|
if 'additionalFlowNoAffine' in opt['networks']['generator']['flow']:
|
|
n_additionalFlowNoAffine = int(opt['networks']['generator']['flow']['additionalFlowNoAffine'])
|
|
for _ in range(n_additionalFlowNoAffine):
|
|
self.layers.append(
|
|
FlowStep(in_channels=self.C,
|
|
hidden_channels=hidden_channels,
|
|
actnorm_scale=actnorm_scale,
|
|
flow_permutation='invconv',
|
|
flow_coupling='noCoupling',
|
|
LU_decomposed=LU_decomposed, opt=opt))
|
|
self.output_shapes.append(
|
|
[-1, self.C, H, W])
|
|
|
|
def arch_squeeze(self, H, W):
|
|
self.C, H, W = self.C * 4, H // 2, W // 2
|
|
self.layers.append(flow.SqueezeLayer(factor=2))
|
|
self.output_shapes.append([-1, self.C, H, W])
|
|
return H, W
|
|
|
|
def get_flow_permutation(self, flow_permutation, opt):
|
|
flow_permutation = opt['networks']['generator']['flow'].get('flow_permutation', 'invconv')
|
|
return flow_permutation
|
|
|
|
def get_affineInCh(self, opt_get):
|
|
affineInCh = opt_get(self.opt, ['networks', 'generator','flow', 'stackRRDB', 'blocks']) or []
|
|
affineInCh = (len(affineInCh) + 1) * 64
|
|
return affineInCh
|
|
|
|
def check_image_shape(self):
|
|
assert self.C == 1 or self.C == 3, ("image_shape should be HWC, like (64, 64, 3)"
|
|
"self.C == 1 or self.C == 3")
|
|
|
|
def forward(self, gt=None, rrdbResults=None, z=None, epses=None, logdet=0., reverse=False, eps_std=None,
|
|
y_onehot=None):
|
|
|
|
if reverse:
|
|
epses_copy = [eps for eps in epses] if isinstance(epses, list) else epses
|
|
|
|
sr, logdet = self.decode(rrdbResults, z, eps_std, epses=epses_copy, logdet=logdet, y_onehot=y_onehot)
|
|
return sr, logdet
|
|
else:
|
|
assert gt is not None
|
|
assert rrdbResults is not None
|
|
z, logdet = self.encode(gt, rrdbResults, logdet=logdet, epses=epses, y_onehot=y_onehot)
|
|
return z, logdet
|
|
|
|
def encode(self, gt, rrdbResults, logdet=0.0, epses=None, y_onehot=None):
|
|
fl_fea = gt
|
|
reverse = False
|
|
level_conditionals = {}
|
|
bypasses = {}
|
|
|
|
L = opt_get(self.opt, ['networks', 'generator','flow', 'L'])
|
|
|
|
for level in range(1, L + 1):
|
|
bypasses[level] = torch.nn.functional.interpolate(gt, scale_factor=2 ** -level, mode='bilinear', align_corners=False)
|
|
|
|
for layer, shape in zip(self.layers, self.output_shapes):
|
|
size = shape[2]
|
|
level = int(np.log(self.patch_sz / size) / np.log(2))
|
|
|
|
if level > 0 and level not in level_conditionals.keys():
|
|
level_conditionals[level] = rrdbResults[self.levelToName[level]]
|
|
|
|
level_conditionals[level] = rrdbResults[self.levelToName[level]]
|
|
|
|
if isinstance(layer, FlowStep):
|
|
fl_fea, logdet = checkpoint(layer, fl_fea, logdet, level_conditionals[level])
|
|
elif isinstance(layer, Split2d):
|
|
fl_fea, logdet = self.forward_split2d(epses, fl_fea, layer, logdet, reverse, level_conditionals[level],
|
|
y_onehot=y_onehot)
|
|
else:
|
|
fl_fea, logdet = layer(fl_fea, logdet, reverse=reverse)
|
|
|
|
z = fl_fea
|
|
|
|
if not isinstance(epses, list):
|
|
return z, logdet
|
|
|
|
epses.append(z)
|
|
return epses, logdet
|
|
|
|
def forward_preFlow(self, fl_fea, logdet, reverse):
|
|
if hasattr(self, 'preFlow'):
|
|
for l in self.preFlow:
|
|
fl_fea, logdet = l(fl_fea, logdet, reverse=reverse)
|
|
return fl_fea, logdet
|
|
|
|
def forward_split2d(self, epses, fl_fea, layer, logdet, reverse, rrdbResults, y_onehot=None):
|
|
ft = None if layer.position is None else rrdbResults[layer.position]
|
|
fl_fea, logdet, eps = layer(fl_fea, logdet, reverse=reverse, eps=epses, ft=ft, y_onehot=y_onehot)
|
|
epses.append(eps)
|
|
return fl_fea, logdet
|
|
|
|
def decode(self, rrdbResults, z, eps_std=None, epses=None, logdet=0.0, y_onehot=None):
|
|
z = epses.pop() if isinstance(epses, list) else z
|
|
|
|
fl_fea = z
|
|
# debug.imwrite("fl_fea", fl_fea)
|
|
bypasses = {}
|
|
level_conditionals = {}
|
|
if not opt_get(self.opt, ['networks', 'generator','flow', 'levelConditional', 'conditional']) == True:
|
|
for level in range(self.L + 1):
|
|
level_conditionals[level] = rrdbResults[self.levelToName[level]]
|
|
|
|
for layer, shape in zip(reversed(self.layers), reversed(self.output_shapes)):
|
|
size = shape[2]
|
|
level = int(np.log(self.patch_sz / size) / np.log(2))
|
|
# size = fl_fea.shape[2]
|
|
# level = int(np.log(160 / size) / np.log(2))
|
|
|
|
if isinstance(layer, Split2d):
|
|
fl_fea, logdet = self.forward_split2d_reverse(eps_std, epses, fl_fea, layer,
|
|
rrdbResults[self.levelToName[level]], logdet=logdet,
|
|
y_onehot=y_onehot)
|
|
elif isinstance(layer, FlowStep):
|
|
fl_fea, logdet = layer(fl_fea, logdet=logdet, reverse=True, rrdbResults=level_conditionals[level])
|
|
else:
|
|
fl_fea, logdet = layer(fl_fea, logdet=logdet, reverse=True)
|
|
|
|
sr = fl_fea
|
|
|
|
assert sr.shape[1] == 3
|
|
return sr, logdet
|
|
|
|
def forward_split2d_reverse(self, eps_std, epses, fl_fea, layer, rrdbResults, logdet, y_onehot=None):
|
|
ft = None if layer.position is None else rrdbResults[layer.position]
|
|
fl_fea, logdet = layer(fl_fea, logdet=logdet, reverse=True,
|
|
eps=epses.pop() if isinstance(epses, list) else None,
|
|
eps_std=eps_std, ft=ft, y_onehot=y_onehot)
|
|
return fl_fea, logdet
|
|
|
|
|
|
def get_position_name(self, H, scale):
|
|
downscale_factor = self.patch_sz // H
|
|
position_name = 'fea_up{}'.format(scale / downscale_factor)
|
|
return position_name
|