fb405d9ef1
- Extract coarse labels for the CIFAR dataset - Add simple resnet that branches lower layers based on coarse labels - Some other cleanup
177 lines
6.2 KiB
Python
177 lines
6.2 KiB
Python
# A copy of the cifar dataset from torch which also returns coarse labels.
|
|
|
|
from PIL import Image
|
|
import os
|
|
import os.path
|
|
import numpy as np
|
|
import pickle
|
|
from typing import Any, Callable, Optional, Tuple
|
|
|
|
from torchvision.datasets import VisionDataset
|
|
from torchvision.datasets.utils import check_integrity, download_and_extract_archive
|
|
|
|
|
|
class CIFAR10(VisionDataset):
|
|
"""`CIFAR10 <https://www.cs.toronto.edu/~kriz/cifar.html>`_ Dataset.
|
|
|
|
Args:
|
|
root (string): Root directory of dataset where directory
|
|
``cifar-10-batches-py`` exists or will be saved to if download is set to True.
|
|
train (bool, optional): If True, creates dataset from training set, otherwise
|
|
creates from test set.
|
|
transform (callable, optional): A function/transform that takes in an PIL image
|
|
and returns a transformed version. E.g, ``transforms.RandomCrop``
|
|
target_transform (callable, optional): A function/transform that takes in the
|
|
target and transforms it.
|
|
download (bool, optional): If true, downloads the dataset from the internet and
|
|
puts it in root directory. If dataset is already downloaded, it is not
|
|
downloaded again.
|
|
|
|
"""
|
|
base_folder = 'cifar-10-batches-py'
|
|
url = "https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz"
|
|
filename = "cifar-10-python.tar.gz"
|
|
tgz_md5 = 'c58f30108f718f92721af3b95e74349a'
|
|
train_list = [
|
|
['data_batch_1', 'c99cafc152244af753f735de768cd75f'],
|
|
['data_batch_2', 'd4bba439e000b95fd0a9bffe97cbabec'],
|
|
['data_batch_3', '54ebc095f3ab1f0389bbae665268c751'],
|
|
['data_batch_4', '634d18415352ddfa80567beed471001a'],
|
|
['data_batch_5', '482c414d41f54cd18b22e5b47cb7c3cb'],
|
|
]
|
|
|
|
test_list = [
|
|
['test_batch', '40351d587109b95175f43aff81a1287e'],
|
|
]
|
|
meta = {
|
|
'filename': 'batches.meta',
|
|
'key': 'label_names',
|
|
'md5': '5ff9c542aee3614f3951f8cda6e48888',
|
|
}
|
|
|
|
def __init__(
|
|
self,
|
|
root: str,
|
|
train: bool = True,
|
|
transform: Optional[Callable] = None,
|
|
target_transform: Optional[Callable] = None,
|
|
download: bool = False,
|
|
) -> None:
|
|
|
|
super(CIFAR10, self).__init__(root, transform=transform,
|
|
target_transform=target_transform)
|
|
|
|
self.train = train # training set or test set
|
|
|
|
if download:
|
|
self.download()
|
|
|
|
if not self._check_integrity():
|
|
raise RuntimeError('Dataset not found or corrupted.' +
|
|
' You can use download=True to download it')
|
|
|
|
if self.train:
|
|
downloaded_list = self.train_list
|
|
else:
|
|
downloaded_list = self.test_list
|
|
|
|
self.data: Any = []
|
|
self.targets = []
|
|
self.coarse_targets = []
|
|
|
|
# now load the picked numpy arrays
|
|
for file_name, checksum in downloaded_list:
|
|
file_path = os.path.join(self.root, self.base_folder, file_name)
|
|
with open(file_path, 'rb') as f:
|
|
entry = pickle.load(f, encoding='latin1')
|
|
self.data.append(entry['data'])
|
|
if 'labels' in entry:
|
|
self.targets.extend(entry['labels'])
|
|
else:
|
|
self.targets.extend(entry['fine_labels'])
|
|
self.coarse_targets.extend(entry['coarse_labels'])
|
|
|
|
self.data = np.vstack(self.data).reshape(-1, 3, 32, 32)
|
|
self.data = self.data.transpose((0, 2, 3, 1)) # convert to HWC
|
|
|
|
self._load_meta()
|
|
|
|
def _load_meta(self) -> None:
|
|
path = os.path.join(self.root, self.base_folder, self.meta['filename'])
|
|
if not check_integrity(path, self.meta['md5']):
|
|
raise RuntimeError('Dataset metadata file not found or corrupted.' +
|
|
' You can use download=True to download it')
|
|
with open(path, 'rb') as infile:
|
|
data = pickle.load(infile, encoding='latin1')
|
|
self.classes = data[self.meta['key']]
|
|
self.class_to_idx = {_class: i for i, _class in enumerate(self.classes)}
|
|
|
|
def __getitem__(self, index: int) -> Tuple[Any, Any]:
|
|
"""
|
|
Args:
|
|
index (int): Index
|
|
|
|
Returns:
|
|
tuple: (image, target) where target is index of the target class.
|
|
"""
|
|
img, target = self.data[index], self.targets[index]
|
|
|
|
# doing this so that it is consistent with all other datasets
|
|
# to return a PIL Image
|
|
img = Image.fromarray(img)
|
|
|
|
if self.transform is not None:
|
|
img = self.transform(img)
|
|
|
|
if self.target_transform is not None:
|
|
target = self.target_transform(target)
|
|
|
|
if len(self.coarse_targets) > 0:
|
|
return img, target, self.coarse_targets[index]
|
|
|
|
return img, target
|
|
|
|
def __len__(self) -> int:
|
|
return len(self.data)
|
|
|
|
def _check_integrity(self) -> bool:
|
|
root = self.root
|
|
for fentry in (self.train_list + self.test_list):
|
|
filename, md5 = fentry[0], fentry[1]
|
|
fpath = os.path.join(root, self.base_folder, filename)
|
|
if not check_integrity(fpath, md5):
|
|
return False
|
|
return True
|
|
|
|
def download(self) -> None:
|
|
if self._check_integrity():
|
|
print('Files already downloaded and verified')
|
|
return
|
|
download_and_extract_archive(self.url, self.root, filename=self.filename, md5=self.tgz_md5)
|
|
|
|
def extra_repr(self) -> str:
|
|
return "Split: {}".format("Train" if self.train is True else "Test")
|
|
|
|
|
|
class CIFAR100(CIFAR10):
|
|
"""`CIFAR100 <https://www.cs.toronto.edu/~kriz/cifar.html>`_ Dataset.
|
|
|
|
This is a subclass of the `CIFAR10` Dataset.
|
|
"""
|
|
base_folder = 'cifar-100-python'
|
|
url = "https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz"
|
|
filename = "cifar-100-python.tar.gz"
|
|
tgz_md5 = 'eb9058c3a382ffc7106e4002c42a8d85'
|
|
train_list = [
|
|
['train', '16019d7e3df5f24257cddd939b257f8d'],
|
|
]
|
|
|
|
test_list = [
|
|
['test', 'f0ef6b0ae62326f3e7ffdfab6717acfc'],
|
|
]
|
|
meta = {
|
|
'filename': 'meta',
|
|
'key': 'fine_label_names',
|
|
'md5': '7973b15100ade9c7d40fb424638fde48',
|
|
}
|