DL-Art-School/codes/models/archs/biggan_gen_arch.py
2020-05-24 07:43:23 -06:00

209 lines
9.1 KiB
Python

# Source: https://github.com/ajbrock/BigGAN-PyTorch/blob/master/BigGANdeep.py
import functools
import torch
import torch.nn as nn
from torch.nn import init
import torch.nn.functional as F
import models.archs.biggan_layers as layers
# BigGAN-deep: uses a different resblock and pattern
# Architectures for G
# Attention is passed in in the format '32_64' to mean applying an attention
# block at both resolution 32x32 and 64x64. Just '64' will apply at 64x64.
# Channel ratio is the ratio of
class GBlock(nn.Module):
def __init__(self, in_channels, out_channels,
which_conv=nn.Conv2d, which_bn=layers.bn, activation=None,
upsample=None, channel_ratio=4):
super(GBlock, self).__init__()
self.in_channels, self.out_channels = in_channels, out_channels
self.hidden_channels = self.in_channels // channel_ratio
self.which_conv, self.which_bn = which_conv, which_bn
self.activation = activation
# Conv layers
self.conv1 = self.which_conv(self.in_channels, self.hidden_channels,
kernel_size=1, padding=0)
self.conv2 = self.which_conv(self.hidden_channels, self.hidden_channels)
self.conv3 = self.which_conv(self.hidden_channels, self.hidden_channels)
self.conv4 = self.which_conv(self.hidden_channels, self.out_channels,
kernel_size=1, padding=0)
# Batchnorm layers
self.bn1 = self.which_bn(self.in_channels)
self.bn2 = self.which_bn(self.hidden_channels)
self.bn3 = self.which_bn(self.hidden_channels)
self.bn4 = self.which_bn(self.hidden_channels)
# upsample layers
self.upsample = upsample
def forward(self, x):
# Project down to channel ratio
h = self.conv1(self.activation(self.bn1(x)))
# Apply next BN-ReLU
h = self.activation(self.bn2(h))
# Drop channels in x if necessary
if self.in_channels != self.out_channels:
x = x[:, :self.out_channels]
# Upsample both h and x at this point
if self.upsample:
h = self.upsample(h)
x = self.upsample(x)
# 3x3 convs
h = self.conv2(h)
h = self.conv3(self.activation(self.bn3(h)))
# Final 1x1 conv
h = self.conv4(self.activation(self.bn4(h)))
return h + x
def G_arch(ch=64, attention='64', base_width=64):
arch = {}
arch[128] = {'in_channels': [ch * item for item in [2, 2, 1, 1]],
'out_channels': [ch * item for item in [2, 1, 1, 1]],
'upsample': [False, True, False, False],
'resolution': [base_width, base_width, base_width*2, base_width*2],
'attention': {2 ** i: (2 ** i in [int(item) for item in attention.split('_')])
for i in range(3, 8)}}
return arch
class Generator(nn.Module):
def __init__(self, G_ch=64, G_depth=2, bottom_width=4, resolution=128,
G_kernel_size=3, G_attn='64',
num_G_SVs=1, num_G_SV_itrs=1, hier=False,
cross_replica=False, mybn=False,
G_activation=nn.ReLU(inplace=False),
BN_eps=1e-5, SN_eps=1e-12,
G_init='ortho', skip_init=False,
G_param='SN', norm_style='bn'):
super(Generator, self).__init__()
# Channel width multiplier
self.ch = G_ch
# Number of resblocks per stage
self.G_depth = G_depth
# The initial spatial dimensions
self.bottom_width = bottom_width
# Resolution of the output
self.resolution = resolution
# Kernel size?
self.kernel_size = G_kernel_size
# Attention?
self.attention = G_attn
# Hierarchical latent space?
self.hier = hier
# Cross replica batchnorm?
self.cross_replica = cross_replica
# Use my batchnorm?
self.mybn = mybn
# nonlinearity for residual blocks
self.activation = G_activation
# Initialization style
self.init = G_init
# Parameterization style
self.G_param = G_param
# Normalization style
self.norm_style = norm_style
# Epsilon for BatchNorm?
self.BN_eps = BN_eps
# Epsilon for Spectral Norm?
self.SN_eps = SN_eps
# Architecture dict
self.arch = G_arch(self.ch, self.attention)[resolution]
# Which convs, batchnorms, and linear layers to use
if self.G_param == 'SN':
self.which_conv = functools.partial(layers.SNConv2d,
kernel_size=3, padding=1,
num_svs=num_G_SVs, num_itrs=num_G_SV_itrs,
eps=self.SN_eps)
else:
self.which_conv = functools.partial(nn.Conv2d, kernel_size=3, padding=1)
self.which_bn = functools.partial(layers.bn,
cross_replica=self.cross_replica,
mybn=self.mybn,
norm_style=self.norm_style,
eps=self.BN_eps)
# Prepare model
# First conv layer to project into feature-space
self.initial_conv = nn.Sequential(self.which_conv(3, self.arch['in_channels'][0]),
layers.bn(self.arch['in_channels'][0],
cross_replica=self.cross_replica,
mybn=self.mybn),
self.activation
)
# self.blocks is a doubly-nested list of modules, the outer loop intended
# to be over blocks at a given resolution (resblocks and/or self-attention)
# while the inner loop is over a given block
self.blocks = []
for index in range(len(self.arch['out_channels'])):
self.blocks += [[GBlock(in_channels=self.arch['in_channels'][index],
out_channels=self.arch['in_channels'][index] if g_index == 0 else
self.arch['out_channels'][index],
which_conv=self.which_conv,
which_bn=self.which_bn,
activation=self.activation,
upsample=(functools.partial(F.interpolate, scale_factor=2)
if self.arch['upsample'][index] and g_index == (
self.G_depth - 1) else None))]
for g_index in range(self.G_depth)]
# If attention on this block, attach it to the end
if self.arch['attention'][self.arch['resolution'][index]]:
print('Adding attention layer in G at resolution %d' % self.arch['resolution'][index])
self.blocks[-1] += [layers.Attention(self.arch['out_channels'][index], self.which_conv)]
# Turn self.blocks into a ModuleList so that it's all properly registered.
self.blocks = nn.ModuleList([nn.ModuleList(block) for block in self.blocks])
# output layer: batchnorm-relu-conv.
# Consider using a non-spectral conv here
self.output_layer = nn.Sequential(layers.bn(self.arch['out_channels'][-1],
cross_replica=self.cross_replica,
mybn=self.mybn),
self.activation,
self.which_conv(self.arch['out_channels'][-1], 3))
# Initialize weights. Optionally skip init for testing.
if not skip_init:
self.init_weights()
# Initialize
def init_weights(self):
self.param_count = 0
for module in self.modules():
if (isinstance(module, nn.Conv2d)
or isinstance(module, nn.Linear)
or isinstance(module, nn.Embedding)):
if self.init == 'ortho':
init.orthogonal_(module.weight)
elif self.init == 'N02':
init.normal_(module.weight, 0, 0.02)
elif self.init in ['glorot', 'xavier']:
init.xavier_uniform_(module.weight)
else:
print('Init style not recognized...')
self.param_count += sum([p.data.nelement() for p in module.parameters()])
print('Param count for G''s initialized parameters: %d' % self.param_count)
def forward(self, z):
# First conv layer to convert into correct filter-space.
h = self.initial_conv(z)
# Loop over blocks
for index, blocklist in enumerate(self.blocks):
# Second inner loop in case block has multiple layers
for block in blocklist:
h = block(h)
# Apply batchnorm-relu-conv-tanh at output
return (torch.tanh(self.output_layer(h)), )
def biggan_medium(num_filters):
return Generator(num_filters)