#include #include #include #include #include #include "private.h" #include "platform.h" #define _MIN(x, y) (x < y) ? x : y /* Lighting will not be calculated if the attenuation * multiplier ends up less than this value */ #define ATTENUATION_THRESHOLD 100.0f static GLfloat SCENE_AMBIENT [] = {0.2f, 0.2f, 0.2f, 1.0f}; static GLboolean VIEWER_IN_EYE_COORDINATES = GL_TRUE; static GLenum COLOR_CONTROL = GL_SINGLE_COLOR; static GLenum COLOR_MATERIAL_MODE = GL_AMBIENT_AND_DIFFUSE; #define AMBIENT_MASK 1 #define DIFFUSE_MASK 2 #define EMISSION_MASK 4 #define SPECULAR_MASK 8 #define SCENE_AMBIENT_MASK 16 static GLenum COLOR_MATERIAL_MASK = AMBIENT_MASK | DIFFUSE_MASK; static LightSource LIGHTS[MAX_LIGHTS]; static GLuint ENABLED_LIGHT_COUNT = 0; static Material MATERIAL; GL_FORCE_INLINE void _glPrecalcLightingValues(GLuint mask); static void recalcEnabledLights() { GLubyte i; ENABLED_LIGHT_COUNT = 0; for(i = 0; i < MAX_LIGHTS; ++i) { if(LIGHTS[i].isEnabled) { ENABLED_LIGHT_COUNT++; } } } void _glInitLights() { static GLfloat ONE [] = {1.0f, 1.0f, 1.0f, 1.0f}; static GLfloat ZERO [] = {0.0f, 0.0f, 0.0f, 1.0f}; static GLfloat PARTIAL [] = {0.2f, 0.2f, 0.2f, 1.0f}; static GLfloat MOSTLY [] = {0.8f, 0.8f, 0.8f, 1.0f}; memcpy(MATERIAL.ambient, PARTIAL, sizeof(GLfloat) * 4); memcpy(MATERIAL.diffuse, MOSTLY, sizeof(GLfloat) * 4); memcpy(MATERIAL.specular, ZERO, sizeof(GLfloat) * 4); memcpy(MATERIAL.emissive, ZERO, sizeof(GLfloat) * 4); MATERIAL.exponent = 0.0f; GLubyte i; for(i = 0; i < MAX_LIGHTS; ++i) { memcpy(LIGHTS[i].ambient, ZERO, sizeof(GLfloat) * 4); memcpy(LIGHTS[i].diffuse, ONE, sizeof(GLfloat) * 4); memcpy(LIGHTS[i].specular, ONE, sizeof(GLfloat) * 4); if(i > 0) { memcpy(LIGHTS[i].diffuse, ZERO, sizeof(GLfloat) * 4); memcpy(LIGHTS[i].specular, ZERO, sizeof(GLfloat) * 4); } LIGHTS[i].position[0] = LIGHTS[i].position[1] = LIGHTS[i].position[3] = 0.0f; LIGHTS[i].position[2] = 1.0f; LIGHTS[i].isDirectional = GL_TRUE; LIGHTS[i].isEnabled = GL_FALSE; LIGHTS[i].spot_direction[0] = LIGHTS[i].spot_direction[1] = 0.0f; LIGHTS[i].spot_direction[2] = -1.0f; LIGHTS[i].spot_exponent = 0.0f; LIGHTS[i].spot_cutoff = 180.0f; LIGHTS[i].constant_attenuation = 1.0f; LIGHTS[i].linear_attenuation = 0.0f; LIGHTS[i].quadratic_attenuation = 0.0f; } _glPrecalcLightingValues(~0); recalcEnabledLights(); } void _glEnableLight(GLubyte light, GLboolean value) { LIGHTS[light].isEnabled = value; recalcEnabledLights(); } GL_FORCE_INLINE void _glPrecalcLightingValues(GLuint mask) { /* Pre-calculate lighting values */ GLshort i; if(mask & AMBIENT_MASK) { for(i = 0; i < MAX_LIGHTS; ++i) { LIGHTS[i].ambientMaterial[0] = LIGHTS[i].ambient[0] * MATERIAL.ambient[0]; LIGHTS[i].ambientMaterial[1] = LIGHTS[i].ambient[1] * MATERIAL.ambient[1]; LIGHTS[i].ambientMaterial[2] = LIGHTS[i].ambient[2] * MATERIAL.ambient[2]; LIGHTS[i].ambientMaterial[3] = LIGHTS[i].ambient[3] * MATERIAL.ambient[3]; } } if(mask & DIFFUSE_MASK) { for(i = 0; i < MAX_LIGHTS; ++i) { LIGHTS[i].diffuseMaterial[0] = LIGHTS[i].diffuse[0] * MATERIAL.diffuse[0]; LIGHTS[i].diffuseMaterial[1] = LIGHTS[i].diffuse[1] * MATERIAL.diffuse[1]; LIGHTS[i].diffuseMaterial[2] = LIGHTS[i].diffuse[2] * MATERIAL.diffuse[2]; LIGHTS[i].diffuseMaterial[3] = LIGHTS[i].diffuse[3] * MATERIAL.diffuse[3]; } } if(mask & SPECULAR_MASK) { for(i = 0; i < MAX_LIGHTS; ++i) { LIGHTS[i].specularMaterial[0] = LIGHTS[i].specular[0] * MATERIAL.specular[0]; LIGHTS[i].specularMaterial[1] = LIGHTS[i].specular[1] * MATERIAL.specular[1]; LIGHTS[i].specularMaterial[2] = LIGHTS[i].specular[2] * MATERIAL.specular[2]; LIGHTS[i].specularMaterial[3] = LIGHTS[i].specular[3] * MATERIAL.specular[3]; } } /* If ambient or emission are updated, we need to update * the base colour. */ if((mask & AMBIENT_MASK) || (mask & EMISSION_MASK) || (mask & SCENE_AMBIENT_MASK)) { MATERIAL.baseColour[0] = MATH_fmac(SCENE_AMBIENT[0], MATERIAL.ambient[0], MATERIAL.emissive[0]); MATERIAL.baseColour[1] = MATH_fmac(SCENE_AMBIENT[1], MATERIAL.ambient[1], MATERIAL.emissive[1]); MATERIAL.baseColour[2] = MATH_fmac(SCENE_AMBIENT[2], MATERIAL.ambient[2], MATERIAL.emissive[2]); MATERIAL.baseColour[3] = MATH_fmac(SCENE_AMBIENT[3], MATERIAL.ambient[3], MATERIAL.emissive[3]); } } void APIENTRY glLightModelf(GLenum pname, const GLfloat param) { glLightModelfv(pname, ¶m); } void APIENTRY glLightModeli(GLenum pname, const GLint param) { glLightModeliv(pname, ¶m); } void APIENTRY glLightModelfv(GLenum pname, const GLfloat *params) { switch(pname) { case GL_LIGHT_MODEL_AMBIENT: { memcpy(SCENE_AMBIENT, params, sizeof(GLfloat) * 4); _glPrecalcLightingValues(SCENE_AMBIENT_MASK); } break; case GL_LIGHT_MODEL_LOCAL_VIEWER: VIEWER_IN_EYE_COORDINATES = (*params) ? GL_TRUE : GL_FALSE; break; case GL_LIGHT_MODEL_TWO_SIDE: /* Not implemented */ default: _glKosThrowError(GL_INVALID_ENUM, __func__); _glKosPrintError(); } } void APIENTRY glLightModeliv(GLenum pname, const GLint* params) { switch(pname) { case GL_LIGHT_MODEL_COLOR_CONTROL: COLOR_CONTROL = *params; break; case GL_LIGHT_MODEL_LOCAL_VIEWER: VIEWER_IN_EYE_COORDINATES = (*params) ? GL_TRUE : GL_FALSE; break; default: _glKosThrowError(GL_INVALID_ENUM, __func__); _glKosPrintError(); } } void APIENTRY glLightfv(GLenum light, GLenum pname, const GLfloat *params) { GLubyte idx = light & 0xF; if(idx >= MAX_LIGHTS) { return; } GLuint mask = (pname == GL_AMBIENT) ? AMBIENT_MASK : (pname == GL_DIFFUSE) ? DIFFUSE_MASK : (pname == GL_SPECULAR) ? SPECULAR_MASK : 0; switch(pname) { case GL_AMBIENT: memcpy(LIGHTS[idx].ambient, params, sizeof(GLfloat) * 4); break; case GL_DIFFUSE: memcpy(LIGHTS[idx].diffuse, params, sizeof(GLfloat) * 4); break; case GL_SPECULAR: memcpy(LIGHTS[idx].specular, params, sizeof(GLfloat) * 4); break; case GL_POSITION: { _glMatrixLoadModelView(); memcpy(LIGHTS[idx].position, params, sizeof(GLfloat) * 4); LIGHTS[idx].isDirectional = params[3] == 0.0f; if(LIGHTS[idx].isDirectional) { //FIXME: Do we need to rotate directional lights? } else { TransformVec3(LIGHTS[idx].position); } } break; case GL_SPOT_DIRECTION: { LIGHTS[idx].spot_direction[0] = params[0]; LIGHTS[idx].spot_direction[1] = params[1]; LIGHTS[idx].spot_direction[2] = params[2]; } break; case GL_CONSTANT_ATTENUATION: case GL_LINEAR_ATTENUATION: case GL_QUADRATIC_ATTENUATION: case GL_SPOT_CUTOFF: case GL_SPOT_EXPONENT: glLightf(light, pname, *params); break; default: _glKosThrowError(GL_INVALID_ENUM, __func__); _glKosPrintError(); } _glPrecalcLightingValues(mask); } void APIENTRY glLightf(GLenum light, GLenum pname, GLfloat param) { GLubyte idx = light & 0xF; if(idx >= MAX_LIGHTS) { return; } switch(pname) { case GL_CONSTANT_ATTENUATION: LIGHTS[idx].constant_attenuation = param; break; case GL_LINEAR_ATTENUATION: LIGHTS[idx].linear_attenuation = param; break; case GL_QUADRATIC_ATTENUATION: LIGHTS[idx].quadratic_attenuation = param; break; case GL_SPOT_EXPONENT: LIGHTS[idx].spot_exponent = param; break; case GL_SPOT_CUTOFF: LIGHTS[idx].spot_cutoff = param; break; default: _glKosThrowError(GL_INVALID_ENUM, __func__); _glKosPrintError(); } } void APIENTRY glMaterialf(GLenum face, GLenum pname, const GLfloat param) { if(face == GL_BACK || pname != GL_SHININESS) { _glKosThrowError(GL_INVALID_ENUM, __func__); _glKosPrintError(); return; } MATERIAL.exponent = _MIN(param, 128); /* 128 is the max according to the GL spec */ } void APIENTRY glMateriali(GLenum face, GLenum pname, const GLint param) { glMaterialf(face, pname, param); } void APIENTRY glMaterialfv(GLenum face, GLenum pname, const GLfloat *params) { if(face == GL_BACK) { _glKosThrowError(GL_INVALID_ENUM, __func__); _glKosPrintError(); return; } switch(pname) { case GL_SHININESS: glMaterialf(face, pname, *params); break; case GL_AMBIENT: vec4cpy(MATERIAL.ambient, params); break; case GL_DIFFUSE: vec4cpy(MATERIAL.diffuse, params); break; case GL_SPECULAR: vec4cpy(MATERIAL.specular, params); break; case GL_EMISSION: vec4cpy(MATERIAL.emissive, params); break; case GL_AMBIENT_AND_DIFFUSE: { vec4cpy(MATERIAL.ambient, params); vec4cpy(MATERIAL.diffuse, params); } break; case GL_COLOR_INDEXES: default: { _glKosThrowError(GL_INVALID_ENUM, __func__); _glKosPrintError(); } } GLuint updateMask = (pname == GL_AMBIENT) ? AMBIENT_MASK: (pname == GL_DIFFUSE) ? DIFFUSE_MASK: (pname == GL_SPECULAR) ? SPECULAR_MASK: (pname == GL_EMISSION) ? EMISSION_MASK: (pname == GL_AMBIENT_AND_DIFFUSE) ? AMBIENT_MASK | DIFFUSE_MASK : 0; _glPrecalcLightingValues(updateMask); } void APIENTRY glColorMaterial(GLenum face, GLenum mode) { if(face != GL_FRONT_AND_BACK) { _glKosThrowError(GL_INVALID_ENUM, __func__); _glKosPrintError(); return; } GLint validModes[] = {GL_AMBIENT, GL_DIFFUSE, GL_AMBIENT_AND_DIFFUSE, GL_EMISSION, GL_SPECULAR, 0}; if(_glCheckValidEnum(mode, validModes, __func__) != 0) { return; } COLOR_MATERIAL_MASK = (mode == GL_AMBIENT) ? AMBIENT_MASK: (mode == GL_DIFFUSE) ? DIFFUSE_MASK: (mode == GL_AMBIENT_AND_DIFFUSE) ? AMBIENT_MASK | DIFFUSE_MASK: (mode == GL_EMISSION) ? EMISSION_MASK : SPECULAR_MASK; COLOR_MATERIAL_MODE = mode; } GL_FORCE_INLINE void bgra_to_float(const uint8_t* input, GLfloat* output) { static const float scale = 1.0f / 255.0f; output[0] = ((float) input[R8IDX]) * scale; output[1] = ((float) input[G8IDX]) * scale; output[2] = ((float) input[B8IDX]) * scale; output[3] = ((float) input[A8IDX]) * scale; } void _glUpdateColourMaterialA(const GLubyte* argb) { float colour[4]; bgra_to_float(argb, colour); vec4cpy(MATERIAL.ambient, colour); _glPrecalcLightingValues(COLOR_MATERIAL_MASK); } void _glUpdateColourMaterialD(const GLubyte* argb) { float colour[4]; bgra_to_float(argb, colour); vec4cpy(MATERIAL.diffuse, colour); _glPrecalcLightingValues(COLOR_MATERIAL_MASK); } void _glUpdateColourMaterialE(const GLubyte* argb) { float colour[4]; bgra_to_float(argb, colour); vec4cpy(MATERIAL.emissive, colour); _glPrecalcLightingValues(COLOR_MATERIAL_MASK); } void _glUpdateColourMaterialAD(const GLubyte* argb) { float colour[4]; bgra_to_float(argb, colour); vec4cpy(MATERIAL.ambient, colour); vec4cpy(MATERIAL.diffuse, colour); _glPrecalcLightingValues(COLOR_MATERIAL_MASK); } GL_FORCE_INLINE GLboolean isDiffuseColorMaterial() { return (COLOR_MATERIAL_MODE == GL_DIFFUSE || COLOR_MATERIAL_MODE == GL_AMBIENT_AND_DIFFUSE); } GL_FORCE_INLINE GLboolean isAmbientColorMaterial() { return (COLOR_MATERIAL_MODE == GL_AMBIENT || COLOR_MATERIAL_MODE == GL_AMBIENT_AND_DIFFUSE); } GL_FORCE_INLINE GLboolean isSpecularColorMaterial() { return (COLOR_MATERIAL_MODE == GL_SPECULAR); } /* * Implementation from here (MIT): * https://github.com/appleseedhq/appleseed/blob/master/src/appleseed/foundation/math/fastmath.h */ GL_FORCE_INLINE float faster_pow2(const float p) { // Underflow of exponential is common practice in numerical routines, so handle it here. const float clipp = p < -126.0f ? -126.0f : p; const union { uint32_t i; float f; } v = { (uint32_t) ((1 << 23) * (clipp + 126.94269504f)) }; return v.f; } GL_FORCE_INLINE float faster_log2(const float x) { assert(x >= 0.0f); const union { float f; uint32_t i; } vx = { x }; const float y = (float) (vx.i) * 1.1920928955078125e-7f; return y - 126.94269504f; } GL_FORCE_INLINE float faster_pow(const float x, const float p) { return faster_pow2(p * faster_log2(x)); } GL_FORCE_INLINE void _glLightVertexDirectional( float* final, uint8_t lid, float LdotN, float NdotH) { float FI = (MATERIAL.exponent) ? faster_pow((LdotN != 0.0f) * NdotH, MATERIAL.exponent) : 1.0f; #define _PROCESS_COMPONENT(X) \ final[X] += (LdotN * LIGHTS[lid].diffuseMaterial[X] + LIGHTS[lid].ambientMaterial[X]) \ + (FI * LIGHTS[lid].specularMaterial[X]); \ _PROCESS_COMPONENT(0); _PROCESS_COMPONENT(1); _PROCESS_COMPONENT(2); #undef _PROCESS_COMPONENT } GL_FORCE_INLINE void _glLightVertexPoint( float* final, uint8_t lid, float LdotN, float NdotH, float att) { float FI = (MATERIAL.exponent) ? faster_pow((LdotN != 0.0f) * NdotH, MATERIAL.exponent) : 1.0f; #define _PROCESS_COMPONENT(X) \ final[X] += ((LdotN * LIGHTS[lid].diffuseMaterial[X] + LIGHTS[lid].ambientMaterial[X]) \ + (FI * LIGHTS[lid].specularMaterial[X])) * att; \ _PROCESS_COMPONENT(0); _PROCESS_COMPONENT(1); _PROCESS_COMPONENT(2); #undef _PROCESS_COMPONENT } void _glPerformLighting(Vertex* vertices, EyeSpaceData* es, const uint32_t count) { GLubyte i; GLuint j; Vertex* vertex = vertices; EyeSpaceData* data = es; /* Calculate the colour material function once */ void (*updateColourMaterial)(const GLubyte*) = NULL; if(_glIsColorMaterialEnabled()) { switch(COLOR_MATERIAL_MODE) { case GL_AMBIENT: updateColourMaterial = _glUpdateColourMaterialA; break; case GL_DIFFUSE: updateColourMaterial = _glUpdateColourMaterialD; break; case GL_EMISSION: updateColourMaterial = _glUpdateColourMaterialE; break; case GL_AMBIENT_AND_DIFFUSE: updateColourMaterial = _glUpdateColourMaterialAD; break; } } /* Calculate the ambient lighting and set up colour material */ for(j = 0; j < count; ++j, ++vertex, ++data) { if(updateColourMaterial) { updateColourMaterial(vertex->bgra); } /* Copy the base colour across */ vec4cpy(data->finalColour, MATERIAL.baseColour); } if(!ENABLED_LIGHT_COUNT) { return; } vertex = vertices; data = es; for(j = 0; j < count; ++j, ++vertex, ++data) { /* Direction to vertex in eye space */ float Vx = -vertex->xyz[0]; float Vy = -vertex->xyz[1]; float Vz = -vertex->xyz[2]; VEC3_NORMALIZE(Vx, Vy, Vz); const float Nx = data->n[0]; const float Ny = data->n[1]; const float Nz = data->n[2]; for(i = 0; i < MAX_LIGHTS; ++i) { if(!LIGHTS[i].isEnabled) { continue; } float Lx = LIGHTS[i].position[0] - vertex->xyz[0]; float Ly = LIGHTS[i].position[1] - vertex->xyz[1]; float Lz = LIGHTS[i].position[2] - vertex->xyz[2]; if(LIGHTS[i].isDirectional) { float Hx = (Lx + 0); float Hy = (Ly + 0); float Hz = (Lz + 1); VEC3_NORMALIZE(Lx, Ly, Lz); VEC3_NORMALIZE(Hx, Hy, Hz); float LdotN, NdotH; VEC3_DOT( Nx, Ny, Nz, Lx, Ly, Lz, LdotN ); VEC3_DOT( Nx, Ny, Nz, Hx, Hy, Hz, NdotH ); if(LdotN < 0.0f) LdotN = 0.0f; if(NdotH < 0.0f) NdotH = 0.0f; _glLightVertexDirectional( data->finalColour, i, LdotN, NdotH ); } else { float D; VEC3_LENGTH(Lx, Ly, Lz, D); float att = ( LIGHTS[i].constant_attenuation + ( LIGHTS[i].linear_attenuation * D ) + (LIGHTS[i].quadratic_attenuation * D * D) ); /* Anything over the attenuation threshold will * be a tiny value after inversion (< 0.01f) so * let's just skip the lighting at that point */ if(att < ATTENUATION_THRESHOLD) { att = MATH_Fast_Invert(att); float Hx = (Lx + Vx); float Hy = (Ly + Vy); float Hz = (Lz + Vz); VEC3_NORMALIZE(Lx, Ly, Lz); VEC3_NORMALIZE(Hx, Hy, Hz); float LdotN, NdotH; VEC3_DOT( Nx, Ny, Nz, Lx, Ly, Lz, LdotN ); VEC3_DOT( Nx, Ny, Nz, Hx, Hy, Hz, NdotH ); if(LdotN < 0.0f) LdotN = 0.0f; if(NdotH < 0.0f) NdotH = 0.0f; _glLightVertexPoint( data->finalColour, i, LdotN, NdotH, att ); } } } vertex->bgra[R8IDX] = clamp(data->finalColour[0] * 255.0f, 0, 255); vertex->bgra[G8IDX] = clamp(data->finalColour[1] * 255.0f, 0, 255); vertex->bgra[B8IDX] = clamp(data->finalColour[2] * 255.0f, 0, 255); vertex->bgra[A8IDX] = clamp(data->finalColour[3] * 255.0f, 0, 255); } } #undef LIGHT_COMPONENT