#include #include #include #include #include #include #include "private.h" #include "../include/gl.h" #include "../containers/stack.h" #define DEG2RAD (0.01745329251994329576923690768489) /* Depth range */ GLfloat DEPTH_RANGE_MULTIPLIER_L = (1 - 0) / 2; GLfloat DEPTH_RANGE_MULTIPLIER_H = (0 + 1) / 2; /* Viewport size */ static GLint gl_viewport_x1, gl_viewport_y1, gl_viewport_width, gl_viewport_height; static Stack MATRIX_STACKS[3]; // modelview, projection, texture static Matrix4x4 NORMAL_MATRIX __attribute__((aligned(32))); static Matrix4x4 SCREENVIEW_MATRIX __attribute__((aligned(32))); static GLenum MATRIX_MODE = GL_MODELVIEW; static GLubyte MATRIX_IDX = 0; static const Matrix4x4 IDENTITY = { 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f }; GLfloat NEAR_PLANE_DISTANCE = 0.0f; static inline void upload_matrix(Matrix4x4* m) { mat_load((matrix_t*) m); } static inline void multiply_matrix(Matrix4x4* m) { mat_apply((matrix_t*) m); } static inline void download_matrix(Matrix4x4* m) { mat_store((matrix_t*) m); } Matrix4x4* _glGetProjectionMatrix() { return (Matrix4x4*) stack_top(&MATRIX_STACKS[1]); } Matrix4x4* _glGetModelViewMatrix() { return (Matrix4x4*) stack_top(&MATRIX_STACKS[0]); } void _glInitMatrices() { init_stack(&MATRIX_STACKS[0], sizeof(Matrix4x4), 32); init_stack(&MATRIX_STACKS[1], sizeof(Matrix4x4), 32); init_stack(&MATRIX_STACKS[2], sizeof(Matrix4x4), 32); stack_push(&MATRIX_STACKS[0], IDENTITY); stack_push(&MATRIX_STACKS[1], IDENTITY); stack_push(&MATRIX_STACKS[2], IDENTITY); memcpy4(NORMAL_MATRIX, IDENTITY, sizeof(Matrix4x4)); memcpy4(SCREENVIEW_MATRIX, IDENTITY, sizeof(Matrix4x4)); glDepthRange(0.0f, 1.0f); glViewport(0, 0, vid_mode->width, vid_mode->height); } #define swap(a, b) { \ GLfloat x = (a); \ a = b; \ b = x; \ } static void inverse(GLfloat* m) { GLfloat f4 = m[4]; GLfloat f8 = m[8]; GLfloat f1 = m[1]; GLfloat f9 = m[9]; GLfloat f2 = m[2]; GLfloat f6 = m[6]; GLfloat f12 = m[12]; GLfloat f13 = m[13]; GLfloat f14 = m[14]; m[1] = f4; m[2] = f8; m[4] = f1; m[6] = f9; m[8] = f2; m[9] = f6; m[12] = -(f12 * m[0] + f13 * m[4] + f14 * m[8]); m[13] = -(f12 * m[1] + f13 * m[5] + f14 * m[9]); m[14] = -(f12 * m[2] + f13 * m[6] + f14 * m[10]); } static void transpose(GLfloat* m) { swap(m[1], m[4]); swap(m[2], m[8]); swap(m[3], m[12]); swap(m[6], m[9]); swap(m[7], m[3]); swap(m[11], m[14]); } static void recalculateNormalMatrix() { memcpy4(NORMAL_MATRIX, stack_top(MATRIX_STACKS + (GL_MODELVIEW & 0xF)), sizeof(Matrix4x4)); inverse((GLfloat*) NORMAL_MATRIX); transpose((GLfloat*) NORMAL_MATRIX); } void APIENTRY glMatrixMode(GLenum mode) { MATRIX_MODE = mode; MATRIX_IDX = mode & 0xF; } void APIENTRY glPushMatrix() { stack_push(MATRIX_STACKS + MATRIX_IDX, stack_top(MATRIX_STACKS + MATRIX_IDX)); } void APIENTRY glPopMatrix() { stack_pop(MATRIX_STACKS + MATRIX_IDX); if(MATRIX_MODE == GL_MODELVIEW) { recalculateNormalMatrix(); } } void APIENTRY glLoadIdentity() { stack_replace(MATRIX_STACKS + MATRIX_IDX, IDENTITY); } void APIENTRY glTranslatef(GLfloat x, GLfloat y, GLfloat z) { static Matrix4x4 trn __attribute__((aligned(32))) = { 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f }; trn[M12] = x; trn[M13] = y; trn[M14] = z; upload_matrix(stack_top(MATRIX_STACKS + MATRIX_IDX)); multiply_matrix(&trn); download_matrix(stack_top(MATRIX_STACKS + MATRIX_IDX)); if(MATRIX_MODE == GL_MODELVIEW) { recalculateNormalMatrix(); } } void APIENTRY glScalef(GLfloat x, GLfloat y, GLfloat z) { static Matrix4x4 scale __attribute__((aligned(32))) = { 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f }; scale[M0] = x; scale[M5] = y; scale[M10] = z; upload_matrix(stack_top(MATRIX_STACKS + MATRIX_IDX)); multiply_matrix(&scale); download_matrix(stack_top(MATRIX_STACKS + MATRIX_IDX)); if(MATRIX_MODE == GL_MODELVIEW) { recalculateNormalMatrix(); } } void APIENTRY glRotatef(GLfloat angle, GLfloat x, GLfloat y, GLfloat z) { static Matrix4x4 rotate __attribute__((aligned(32))) = { 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f }; float r = DEG2RAD * angle; float c = cos(r); float s = sin(r); vec3f_normalize(x, y, z); float invc = 1.0f - c; float xs = x * s; float zs = z * s; float ys = y * s; float xz = x * z; float xy = y * x; float yz = y * z; rotate[M0] = (x * x) * invc + c; rotate[M1] = xy * invc + zs; rotate[M2] = xz * invc - ys; rotate[M4] = xy * invc - zs; rotate[M5] = (y * y) * invc + c; rotate[M6] = yz * invc + xs; rotate[M8] = xz * invc + ys; rotate[M9] = yz * invc - xs; rotate[M10] = (z * z) * invc + c; upload_matrix(stack_top(MATRIX_STACKS + MATRIX_IDX)); multiply_matrix(&rotate); download_matrix(stack_top(MATRIX_STACKS + MATRIX_IDX)); if(MATRIX_MODE == GL_MODELVIEW) { recalculateNormalMatrix(); } } /* Load an arbitrary matrix */ void APIENTRY glLoadMatrixf(const GLfloat *m) { static Matrix4x4 TEMP; TEMP[M0] = m[0]; TEMP[M1] = m[1]; TEMP[M2] = m[2]; TEMP[M3] = m[3]; TEMP[M4] = m[4]; TEMP[M5] = m[5]; TEMP[M6] = m[6]; TEMP[M7] = m[7]; TEMP[M8] = m[8]; TEMP[M9] = m[9]; TEMP[M10] = m[10]; TEMP[M11] = m[11]; TEMP[M12] = m[12]; TEMP[M13] = m[13]; TEMP[M14] = m[14]; TEMP[M15] = m[15]; stack_replace(MATRIX_STACKS + MATRIX_IDX, TEMP); if(MATRIX_MODE == GL_MODELVIEW) { recalculateNormalMatrix(); } } /* Ortho */ void APIENTRY glOrtho(GLfloat left, GLfloat right, GLfloat bottom, GLfloat top, GLfloat znear, GLfloat zfar) { /* Ortho Matrix */ static Matrix4x4 OrthoMatrix __attribute__((aligned(32))) = { 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f }; OrthoMatrix[M0] = 2.0f / (right - left); OrthoMatrix[M5] = 2.0f / (top - bottom); OrthoMatrix[M10] = -2.0f / (zfar - znear); OrthoMatrix[M12] = -(right + left) / (right - left); OrthoMatrix[M13] = -(top + bottom) / (top - bottom); OrthoMatrix[M14] = -(zfar + znear) / (zfar - znear); upload_matrix(stack_top(MATRIX_STACKS + MATRIX_IDX)); multiply_matrix(&OrthoMatrix); download_matrix(stack_top(MATRIX_STACKS + MATRIX_IDX)); } /* Set the GL frustum */ void APIENTRY glFrustum(GLfloat left, GLfloat right, GLfloat bottom, GLfloat top, GLfloat znear, GLfloat zfar) { /* Frustum Matrix */ static Matrix4x4 FrustumMatrix __attribute__((aligned(32))); memset(FrustumMatrix, 0, sizeof(float) * 16); const float near2 = 2.0f * znear; const float A = (right + left) / (right - left); const float B = (top + bottom) / (top - bottom); const float C = -((zfar + znear) / (zfar - znear)); const float D = -((2.0f * zfar * znear) / (zfar - znear)); FrustumMatrix[M0] = near2 / (right - left); FrustumMatrix[M5] = near2 / (top - bottom); FrustumMatrix[M8] = A; FrustumMatrix[M9] = B; FrustumMatrix[M10] = C; FrustumMatrix[M11] = -1.0f; FrustumMatrix[M14] = D; upload_matrix(stack_top(MATRIX_STACKS + MATRIX_IDX)); multiply_matrix(&FrustumMatrix); download_matrix(stack_top(MATRIX_STACKS + MATRIX_IDX)); } /* Multiply the current matrix by an arbitrary matrix */ void glMultMatrixf(const GLfloat *m) { static Matrix4x4 TEMP; TEMP[M0] = m[0]; TEMP[M1] = m[1]; TEMP[M2] = m[2]; TEMP[M3] = m[3]; TEMP[M4] = m[4]; TEMP[M5] = m[5]; TEMP[M6] = m[6]; TEMP[M7] = m[7]; TEMP[M8] = m[8]; TEMP[M9] = m[9]; TEMP[M10] = m[10]; TEMP[M11] = m[11]; TEMP[M12] = m[12]; TEMP[M13] = m[13]; TEMP[M14] = m[14]; TEMP[M15] = m[15]; upload_matrix(stack_top(MATRIX_STACKS + MATRIX_IDX)); multiply_matrix((Matrix4x4*) &TEMP); download_matrix(stack_top(MATRIX_STACKS + MATRIX_IDX)); if(MATRIX_MODE == GL_MODELVIEW) { recalculateNormalMatrix(); } } /* Load an arbitrary transposed matrix */ void glLoadTransposeMatrixf(const GLfloat *m) { /* We store matrices transpose anyway, so m will be * transpose compared to all other matrices */ static Matrix4x4 TEMP __attribute__((aligned(32))); TEMP[M0] = m[0]; TEMP[M1] = m[4]; TEMP[M2] = m[8]; TEMP[M3] = m[12]; TEMP[M4] = m[1]; TEMP[M5] = m[5]; TEMP[M6] = m[9]; TEMP[M7] = m[13]; TEMP[M8] = m[3]; TEMP[M9] = m[6]; TEMP[M10] = m[10]; TEMP[M11] = m[14]; TEMP[M12] = m[4]; TEMP[M13] = m[7]; TEMP[M14] = m[11]; TEMP[M15] = m[15]; stack_replace(MATRIX_STACKS + MATRIX_IDX, TEMP); if(MATRIX_MODE == GL_MODELVIEW) { recalculateNormalMatrix(); } } /* Multiply the current matrix by an arbitrary transposed matrix */ void glMultTransposeMatrixf(const GLfloat *m) { static Matrix4x4 TEMP __attribute__((aligned(32))); TEMP[M0] = m[0]; TEMP[M1] = m[4]; TEMP[M2] = m[8]; TEMP[M3] = m[12]; TEMP[M4] = m[1]; TEMP[M5] = m[5]; TEMP[M6] = m[9]; TEMP[M7] = m[13]; TEMP[M8] = m[3]; TEMP[M9] = m[6]; TEMP[M10] = m[10]; TEMP[M11] = m[14]; TEMP[M12] = m[4]; TEMP[M13] = m[7]; TEMP[M14] = m[11]; TEMP[M15] = m[15]; upload_matrix(stack_top(MATRIX_STACKS + MATRIX_IDX)); multiply_matrix(&TEMP); download_matrix(stack_top(MATRIX_STACKS + MATRIX_IDX)); if(MATRIX_MODE == GL_MODELVIEW) { recalculateNormalMatrix(); } } /* Set the GL viewport */ void APIENTRY glViewport(GLint x, GLint y, GLsizei width, GLsizei height) { gl_viewport_x1 = x; gl_viewport_y1 = y; gl_viewport_width = width; gl_viewport_height = height; GLfloat hw = ((GLfloat) width) / 2.0f; GLfloat hh = ((GLfloat) height) / 2.0f; y *= -1; // Flip SCREENVIEW_MATRIX[M0] = hw; SCREENVIEW_MATRIX[M5] = -hh; SCREENVIEW_MATRIX[M10] = 1; SCREENVIEW_MATRIX[M12] = hw + x; SCREENVIEW_MATRIX[M13] = vid_mode->height - hh + y; } /* Set the depth range */ void APIENTRY glDepthRangef(GLclampf n, GLclampf f) { if(n < 0.0f) n = 0.0f; else if(n > 1.0f) n = 1.0f; if(f < 0.0f) f = 0.0f; else if(f > 1.0f) f = 1.0f; DEPTH_RANGE_MULTIPLIER_L = (f - n) / 2.0f; DEPTH_RANGE_MULTIPLIER_H = (n + f) / 2.0f; } void APIENTRY glDepthRange(GLclampf n, GLclampf f){ glDepthRangef(n,f); } /* Vector Cross Product - Used by gluLookAt */ static inline void vec3f_cross(const GLfloat* v1, const GLfloat* v2, GLfloat* result) { result[0] = v1[1] * v2[2] - v1[2] * v2[1]; result[1] = v1[2] * v2[0] - v1[0] * v2[2]; result[2] = v1[0] * v2[1] - v1[1] * v2[0]; } GL_FORCE_INLINE void vec3f_normalize_sh4(float *v){ float length, ilength; ilength = MATH_fsrra(v[0]*v[0] + v[1]*v[1] + v[2]*v[2]); length = MATH_Fast_Invert(ilength); if (length) { v[0] *= ilength; v[1] *= ilength; v[2] *= ilength; } } void gluLookAt(GLfloat eyex, GLfloat eyey, GLfloat eyez, GLfloat centerx, GLfloat centery, GLfloat centerz, GLfloat upx, GLfloat upy, GLfloat upz) { GLfloat m [16]; GLfloat f [3]; GLfloat u [3]; GLfloat s [3]; f[0] = centerx - eyex; f[1] = centery - eyey; f[2] = centerz - eyez; u[0] = upx; u[1] = upy; u[2] = upz; vec3f_normalize_sh4(f); vec3f_cross(f, u, s); vec3f_normalize_sh4(s); vec3f_cross(s, f, u); m[0] = s[0]; m[4] = s[1]; m[8] = s[2]; m[12] = 0.0f; m[1] = u[0]; m[5] = u[1]; m[9] = u[2]; m[13] = 0.0f; m[2] = -f[0]; m[6] = -f[1]; m[10] = -f[2]; m[14] = 0.0f; m[3] = 0.0f; m[7] = 0.0f; m[11] = 0.0f; m[15] = 1.0f; static Matrix4x4 trn __attribute__((aligned(32))) = { 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f }; trn[M12] = -eyex; trn[M13] = -eyey; trn[M14] = -eyez; // Does not modify internal Modelview matrix upload_matrix(&m); multiply_matrix(&trn); multiply_matrix(stack_top(MATRIX_STACKS + (GL_MODELVIEW & 0xF))); download_matrix(stack_top(MATRIX_STACKS + (GL_MODELVIEW & 0xF))); } void _glApplyRenderMatrix() { upload_matrix(&SCREENVIEW_MATRIX); multiply_matrix(stack_top(MATRIX_STACKS + (GL_PROJECTION & 0xF))); multiply_matrix(stack_top(MATRIX_STACKS + (GL_MODELVIEW & 0xF))); } void _glMatrixLoadTexture() { upload_matrix(stack_top(MATRIX_STACKS + (GL_TEXTURE & 0xF))); } void _glMatrixLoadModelView() { upload_matrix(stack_top(MATRIX_STACKS + (GL_MODELVIEW & 0xF))); } void _glMatrixLoadNormal() { upload_matrix(&NORMAL_MATRIX); }