#include #include #include #include "private.h" static GLfloat SCENE_AMBIENT [] = {0.2, 0.2, 0.2, 1.0}; static GLboolean VIEWER_IN_EYE_COORDINATES = GL_TRUE; static GLenum COLOR_CONTROL = GL_SINGLE_COLOR; static GLboolean TWO_SIDED_LIGHTING = GL_FALSE; static GLenum COLOR_MATERIAL_MODE = GL_AMBIENT_AND_DIFFUSE; static LightSource LIGHTS[MAX_LIGHTS]; static Material MATERIAL; void _glInitLights() { static GLfloat ONE [] = {1.0f, 1.0f, 1.0f, 1.0f}; static GLfloat ZERO [] = {0.0f, 0.0f, 0.0f, 1.0f}; static GLfloat PARTIAL [] = {0.2f, 0.2f, 0.2f, 1.0f}; static GLfloat MOSTLY [] = {0.8f, 0.8f, 0.8f, 1.0f}; memcpy(MATERIAL.ambient, PARTIAL, sizeof(GLfloat) * 4); memcpy(MATERIAL.diffuse, MOSTLY, sizeof(GLfloat) * 4); memcpy(MATERIAL.specular, ZERO, sizeof(GLfloat) * 4); memcpy(MATERIAL.emissive, ZERO, sizeof(GLfloat) * 4); MATERIAL.exponent = 0.0f; GLubyte i; for(i = 0; i < MAX_LIGHTS; ++i) { memcpy(LIGHTS[i].ambient, ZERO, sizeof(GLfloat) * 4); memcpy(LIGHTS[i].diffuse, ONE, sizeof(GLfloat) * 4); memcpy(LIGHTS[i].specular, ONE, sizeof(GLfloat) * 4); if(i > 0) { memcpy(LIGHTS[i].diffuse, ZERO, sizeof(GLfloat) * 4); memcpy(LIGHTS[i].specular, ZERO, sizeof(GLfloat) * 4); } LIGHTS[i].position[0] = LIGHTS[i].position[1] = LIGHTS[i].position[3] = 0.0f; LIGHTS[i].position[2] = 1.0f; LIGHTS[i].spot_direction[0] = LIGHTS[i].spot_direction[1] = 0.0f; LIGHTS[i].spot_direction[2] = -1.0f; LIGHTS[i].spot_exponent = 0.0f; LIGHTS[i].spot_cutoff = 180.0f; LIGHTS[i].constant_attenuation = 1.0f; LIGHTS[i].linear_attenuation = 0.0f; LIGHTS[i].quadratic_attenuation = 0.0f; LIGHTS[i].is_directional = GL_FALSE; } } void APIENTRY glLightModelf(GLenum pname, const GLfloat param) { glLightModelfv(pname, ¶m); } void APIENTRY glLightModeli(GLenum pname, const GLint param) { glLightModeliv(pname, ¶m); } void APIENTRY glLightModelfv(GLenum pname, const GLfloat *params) { switch(pname) { case GL_LIGHT_MODEL_AMBIENT: memcpy(SCENE_AMBIENT, params, sizeof(GLfloat) * 4); break; case GL_LIGHT_MODEL_LOCAL_VIEWER: VIEWER_IN_EYE_COORDINATES = (*params) ? GL_TRUE : GL_FALSE; break; case GL_LIGHT_MODEL_TWO_SIDE: /* Not implemented */ default: _glKosThrowError(GL_INVALID_ENUM, __func__); _glKosPrintError(); } } void APIENTRY glLightModeliv(GLenum pname, const GLint* params) { switch(pname) { case GL_LIGHT_MODEL_COLOR_CONTROL: COLOR_CONTROL = *params; break; case GL_LIGHT_MODEL_LOCAL_VIEWER: VIEWER_IN_EYE_COORDINATES = (*params) ? GL_TRUE : GL_FALSE; break; default: _glKosThrowError(GL_INVALID_ENUM, __func__); _glKosPrintError(); } } void APIENTRY glLightfv(GLenum light, GLenum pname, const GLfloat *params) { GLubyte idx = light & 0xF; if(idx >= MAX_LIGHTS) { return; } switch(pname) { case GL_AMBIENT: memcpy(LIGHTS[idx].ambient, params, sizeof(GLfloat) * 4); break; case GL_DIFFUSE: memcpy(LIGHTS[idx].diffuse, params, sizeof(GLfloat) * 4); break; case GL_SPECULAR: memcpy(LIGHTS[idx].specular, params, sizeof(GLfloat) * 4); break; case GL_POSITION: { _glMatrixLoadModelView(); memcpy(LIGHTS[idx].position, params, sizeof(GLfloat) * 4); LIGHTS[idx].is_directional = (params[3] == 0.0f) ? GL_TRUE : GL_FALSE; if(LIGHTS[idx].is_directional) { //FIXME: Do we need to rotate directional lights? } else { mat_trans_single4( LIGHTS[idx].position[0], LIGHTS[idx].position[1], LIGHTS[idx].position[2], LIGHTS[idx].position[3] ); } } break; case GL_SPOT_DIRECTION: { LIGHTS[idx].spot_direction[0] = params[0]; LIGHTS[idx].spot_direction[1] = params[1]; LIGHTS[idx].spot_direction[2] = params[2]; } break; case GL_CONSTANT_ATTENUATION: case GL_LINEAR_ATTENUATION: case GL_QUADRATIC_ATTENUATION: case GL_SPOT_CUTOFF: case GL_SPOT_EXPONENT: glLightf(light, pname, *params); break; default: _glKosThrowError(GL_INVALID_ENUM, __func__); _glKosPrintError(); } } void APIENTRY glLightf(GLenum light, GLenum pname, GLfloat param) { GLubyte idx = light & 0xF; if(idx >= MAX_LIGHTS) { return; } switch(pname) { case GL_CONSTANT_ATTENUATION: LIGHTS[idx].constant_attenuation = param; break; case GL_LINEAR_ATTENUATION: LIGHTS[idx].linear_attenuation = param; break; case GL_QUADRATIC_ATTENUATION: LIGHTS[idx].quadratic_attenuation = param; break; case GL_SPOT_EXPONENT: LIGHTS[idx].spot_exponent = param; break; case GL_SPOT_CUTOFF: LIGHTS[idx].spot_cutoff = param; break; default: _glKosThrowError(GL_INVALID_ENUM, __func__); _glKosPrintError(); } } void APIENTRY glMaterialf(GLenum face, GLenum pname, const GLfloat param) { if(face == GL_BACK || pname != GL_SHININESS) { _glKosThrowError(GL_INVALID_ENUM, __func__); _glKosPrintError(); return; } MATERIAL.exponent = param; } void APIENTRY glMateriali(GLenum face, GLenum pname, const GLint param) { glMaterialf(face, pname, param); } void APIENTRY glMaterialfv(GLenum face, GLenum pname, const GLfloat *params) { if(pname == GL_SHININESS) { glMaterialf(face, pname, *params); return; } if(face == GL_BACK) { _glKosThrowError(GL_INVALID_ENUM, __func__); _glKosPrintError(); return; } switch(pname) { case GL_AMBIENT: memcpy(MATERIAL.ambient, params, sizeof(GLfloat) * 4); break; case GL_DIFFUSE: memcpy(MATERIAL.diffuse, params, sizeof(GLfloat) * 4); break; case GL_SPECULAR: memcpy(MATERIAL.specular, params, sizeof(GLfloat) * 4); break; case GL_EMISSION: memcpy(MATERIAL.specular, params, sizeof(GLfloat) * 4); break; case GL_AMBIENT_AND_DIFFUSE: { glMaterialfv(face, GL_AMBIENT, params); glMaterialfv(face, GL_DIFFUSE, params); } break; case GL_COLOR_INDEXES: default: { _glKosThrowError(GL_INVALID_ENUM, __func__); _glKosPrintError(); } } } void APIENTRY glColorMaterial(GLenum face, GLenum mode) { if(face != GL_FRONT_AND_BACK) { _glKosThrowError(GL_INVALID_ENUM, __func__); _glKosPrintError(); return; } GLint validModes[] = {GL_AMBIENT, GL_DIFFUSE, GL_AMBIENT_AND_DIFFUSE, GL_EMISSION, GL_SPECULAR, 0}; if(_glCheckValidEnum(mode, validModes, __func__) != 0) { return; } COLOR_MATERIAL_MODE = mode; } static inline GLboolean isDiffuseColorMaterial() { return (COLOR_MATERIAL_MODE == GL_DIFFUSE || COLOR_MATERIAL_MODE == GL_AMBIENT_AND_DIFFUSE); } static inline GLboolean isAmbientColorMaterial() { return (COLOR_MATERIAL_MODE == GL_AMBIENT || COLOR_MATERIAL_MODE == GL_AMBIENT_AND_DIFFUSE); } static inline GLboolean isSpecularColorMaterial() { return (COLOR_MATERIAL_MODE == GL_SPECULAR); } static inline void initVec3(struct vec3f* v, const GLfloat* src) { memcpy(v, src, sizeof(GLfloat) * 3); } /* Fast POW Implementation - Less accurate, but much faster than math.h */ #define EXP_A 184 #define EXP_C 16249 static inline float FEXP(float y) { union { float d; struct { short j, i; } n; } eco; eco.n.i = EXP_A * (y) + (EXP_C); eco.n.j = 0; return eco.d; } static inline float FLOG(float y) { int *nTemp = (int *)&y; y = (*nTemp) >> 16; return (y - EXP_C) / EXP_A; } static inline float FPOW(float b, float p) { return FEXP(FLOG(b) * p); } #define LIGHT_COMPONENT(C) { \ const GLfloat* acm = &MA[C]; \ const GLfloat* dcm = &MD[C]; \ const GLfloat* scm = &MS[C]; \ const GLfloat* scli = &light->specular[C]; \ const GLfloat* dcli = &light->diffuse[C]; \ const GLfloat* acli = &light->ambient[C]; \ const GLfloat* srm = &MATERIAL.exponent; \ const GLfloat fi = (LdotN == 0) ? 0 : 1; \ GLfloat component = (*acm * *acli); \ component += (LdotN * *dcm * *dcli); \ component += (FPOW((fi * NdotH), *srm) * *scm * *scli); \ component *= att; \ component *= spot; \ final[C] += component; \ } static inline float vec3_dot_limited( const float* x1, const float* y1, const float* z1, const float* x2, const float* y2, const float* z2) { float ret; vec3f_dot(*x1, *y1, *z1, *x2, *y2, *z2, ret); return (ret < 0) ? 0 : ret; } void _glPerformLighting(Vertex* vertices, const EyeSpaceData* es, const int32_t count) { int8_t i; int32_t j; const LightSource* light = NULL; const GLboolean colorMaterial = _glIsColorMaterialEnabled(); const GLboolean isDiffuseCM = isDiffuseColorMaterial(); const GLboolean isAmbientCM = isAmbientColorMaterial(); const GLboolean isSpecularCM = isSpecularColorMaterial(); static GLfloat CM[4]; /* So the DC has 16 floating point registers, that means * we need to limit the number of floats as much as possible * to give the compiler a good enough chance to do the right * thing */ Vertex* vertex = vertices; const EyeSpaceData* data = es; const static float ONE_OVER_255 = 1.0f / 255.0f; for(j = 0; j < count; ++j, ++vertex, ++data) { /* When GL_COLOR_MATERIAL is on, we need to pull out * the passed in diffuse and use it */ const GLfloat* MD = MATERIAL.diffuse; const GLfloat* MA = MATERIAL.ambient; const GLfloat* MS = MATERIAL.specular; if(colorMaterial) { CM[0] = ((GLfloat) vertex->bgra[R8IDX]) * ONE_OVER_255; CM[1] = ((GLfloat) vertex->bgra[G8IDX]) * ONE_OVER_255; CM[2] = ((GLfloat) vertex->bgra[B8IDX]) * ONE_OVER_255; CM[3] = ((GLfloat) vertex->bgra[A8IDX]) * ONE_OVER_255; MD = (isDiffuseCM) ? CM : MATERIAL.diffuse; MA = (isAmbientCM) ? CM : MATERIAL.ambient; MS = (isSpecularCM) ? CM : MATERIAL.specular; } float final[4]; /* Initial, non-light related values */ final[0] = (SCENE_AMBIENT[0] * MA[0]) + MATERIAL.emissive[0]; final[1] = (SCENE_AMBIENT[1] * MA[1]) + MATERIAL.emissive[1]; final[2] = (SCENE_AMBIENT[2] * MA[2]) + MATERIAL.emissive[2]; final[3] = MD[3]; float Vx, Vy, Vz; Vx = -data->xyz[0]; Vy = -data->xyz[1]; Vz = -data->xyz[2]; vec3f_normalize(Vx, Vy, Vz); for(i = 0; i < MAX_LIGHTS; ++i) { if(!_glIsLightEnabled(i)) continue; /* Calc light specific parameters */ light = &LIGHTS[i]; float Lx, Ly, Lz, D; float Hx, Hy, Hz; const float* Nx = &data->n[0]; const float* Ny = &data->n[1]; const float* Nz = &data->n[2]; Lx = light->position[0] - data->xyz[0]; Ly = light->position[1] - data->xyz[1]; Lz = light->position[2] - data->xyz[2]; vec3f_length(Lx, Ly, Lz, D); { /* Normalize L - scoping ensures Llen is temporary */ const float Llen = 1.0f / D; Lx *= Llen; Ly *= Llen; Lz *= Llen; } Hx = (Lx + Vx); Hy = (Ly + Vy); Hz = (Lz + Vz); vec3f_normalize(Hx, Hy, Hz); const float LdotN = vec3_dot_limited( &Lx, &Ly, &Lz, Nx, Ny, Nz ); const float NdotH = vec3_dot_limited( Nx, Ny, Nz, &Hx, &Hy, &Hz ); const float att = ( light->position[3] == 0.0f) ? 1.0f : 1.0f / (light->constant_attenuation + (light->linear_attenuation * D) + (light->quadratic_attenuation * D * D) ); const float spot = 1.0f; LIGHT_COMPONENT(0); LIGHT_COMPONENT(1); LIGHT_COMPONENT(2); } vertex->bgra[R8IDX] = (GLubyte)(fminf(final[0] * 255.0f, 255.0f)); vertex->bgra[G8IDX] = (GLubyte)(fminf(final[1] * 255.0f, 255.0f)); vertex->bgra[B8IDX] = (GLubyte)(fminf(final[2] * 255.0f, 255.0f)); vertex->bgra[A8IDX] = (GLubyte)(fminf(final[3] * 255.0f, 255.0f)); } } #undef LIGHT_COMPONENT