#include #include #include #include #include #include #include #include "../include/gl.h" #include "../include/glext.h" #include "private.h" #include "profiler.h" static AttribPointer VERTEX_POINTER; static AttribPointer UV_POINTER; static AttribPointer ST_POINTER; static AttribPointer NORMAL_POINTER; static AttribPointer DIFFUSE_POINTER; static GLuint ENABLED_VERTEX_ATTRIBUTES = 0; static GLubyte ACTIVE_CLIENT_TEXTURE = 0; static GLboolean FAST_PATH_ENABLED = GL_FALSE; #define ITERATE(count) \ GLuint i = count; \ while(i--) void _glInitAttributePointers() { TRACE(); VERTEX_POINTER.ptr = NULL; VERTEX_POINTER.stride = 0; VERTEX_POINTER.type = GL_FLOAT; VERTEX_POINTER.size = 4; DIFFUSE_POINTER.ptr = NULL; DIFFUSE_POINTER.stride = 0; DIFFUSE_POINTER.type = GL_FLOAT; DIFFUSE_POINTER.size = 4; UV_POINTER.ptr = NULL; UV_POINTER.stride = 0; UV_POINTER.type = GL_FLOAT; UV_POINTER.size = 4; ST_POINTER.ptr = NULL; ST_POINTER.stride = 0; ST_POINTER.type = GL_FLOAT; ST_POINTER.size = 4; NORMAL_POINTER.ptr = NULL; NORMAL_POINTER.stride = 0; NORMAL_POINTER.type = GL_FLOAT; NORMAL_POINTER.size = 3; } static GLboolean _glIsVertexDataFastPathCompatible() { /* * We provide a "fast path" if vertex data is provided in * exactly the right format that matches what the PVR can handle. * This function returns true if all the requirements are met. */ /* * At least these attributes need to be enabled, because we're not going to do any checking * in the loop */ if((ENABLED_VERTEX_ATTRIBUTES & VERTEX_ENABLED_FLAG) != VERTEX_ENABLED_FLAG) return GL_FALSE; if((ENABLED_VERTEX_ATTRIBUTES & UV_ENABLED_FLAG) != UV_ENABLED_FLAG) return GL_FALSE; if((ENABLED_VERTEX_ATTRIBUTES & DIFFUSE_ENABLED_FLAG) != DIFFUSE_ENABLED_FLAG) return GL_FALSE; // All 3 attribute types must have a stride of 32 if(VERTEX_POINTER.stride != 32) return GL_FALSE; if(UV_POINTER.stride != 32) return GL_FALSE; if(DIFFUSE_POINTER.stride != 32) return GL_FALSE; // UV must follow vertex, diffuse must follow UV if((UV_POINTER.ptr - VERTEX_POINTER.ptr) != sizeof(GLfloat) * 3) return GL_FALSE; if((DIFFUSE_POINTER.ptr - UV_POINTER.ptr) != sizeof(GLfloat) * 2) return GL_FALSE; if(VERTEX_POINTER.type != GL_FLOAT) return GL_FALSE; if(VERTEX_POINTER.size != 3) return GL_FALSE; if(UV_POINTER.type != GL_FLOAT) return GL_FALSE; if(UV_POINTER.size != 2) return GL_FALSE; if(DIFFUSE_POINTER.type != GL_UNSIGNED_BYTE) return GL_FALSE; /* BGRA is the required color order */ if(DIFFUSE_POINTER.size != GL_BGRA) return GL_FALSE; return GL_TRUE; } static inline GLuint byte_size(GLenum type) { switch(type) { case GL_BYTE: return sizeof(GLbyte); case GL_UNSIGNED_BYTE: return sizeof(GLubyte); case GL_SHORT: return sizeof(GLshort); case GL_UNSIGNED_SHORT: return sizeof(GLushort); case GL_INT: return sizeof(GLint); case GL_UNSIGNED_INT: return sizeof(GLuint); case GL_DOUBLE: return sizeof(GLdouble); case GL_UNSIGNED_INT_2_10_10_10_REV: return sizeof(GLuint); case GL_INT_2_10_10_10_REV: return sizeof(GLint); case GL_FLOAT: default: return sizeof(GLfloat); } } typedef void (*FloatParseFunc)(GLfloat* out, const GLubyte* in); typedef void (*ByteParseFunc)(GLubyte* out, const GLubyte* in); typedef void (*PolyBuildFunc)(Vertex* first, Vertex* previous, Vertex* vertex, Vertex* next, const GLsizei i); static inline float clamp(float d, float min, float max) { const float t = d < min ? min : d; return t > max ? max : t; } static void _readVertexData3f3f(const float* input, GLuint count, GLubyte stride, float* output) { ITERATE(count) { output[0] = input[0]; output[1] = input[1]; output[2] = input[2]; input = (float*) (((GLubyte*) input) + stride); output = (float*) (((GLubyte*) output) + sizeof(Vertex)); } } static inline float conv_i10_to_norm_float(int i10) { struct attr_bits_10 { signed int x:10; } val; val.x = i10; return (2.0F * (float)val.x + 1.0F) * (1.0F / 1023.0F); } // 10:10:10:2REV format static void _readVertexData1i3f(const GLuint* input, GLuint count, GLubyte stride, float* output) { ITERATE(count) { int inp = *input; output[0] = conv_i10_to_norm_float((inp) & 0x3ff); output[1] = conv_i10_to_norm_float(((inp) >> 10) & 0x3ff); output[2] = conv_i10_to_norm_float(((inp) >> 20) & 0x3ff); // fprintf(stderr, "%d -> %f %f %f\n", inp, output[0], output[1], output[2]); input = (GLuint*) (((GLubyte*) input) + stride); output = (GLfloat*) (((GLubyte*) output) + sizeof(VertexExtra)); } } /* VE == VertexExtra */ static void _readVertexData3f3fVE(const float* input, GLuint count, GLubyte stride, float* output) { ITERATE(count) { output[0] = input[0]; output[1] = input[1]; output[2] = input[2]; input = (float*) (((GLubyte*) input) + stride); output = (float*) (((GLubyte*) output) + sizeof(VertexExtra)); } } static void _readVertexData3us3f(const GLushort* input, GLuint count, GLubyte stride, GLfloat* output) { ITERATE(count) { output[0] = input[0]; output[1] = input[1]; output[2] = input[2]; input = (GLushort*) (((GLubyte*) input) + stride); output = (float*) (((GLubyte*) output) + sizeof(Vertex)); } } static void _readVertexData3us3fVE(const GLushort* input, GLuint count, GLubyte stride, GLfloat* output) { ITERATE(count) { output[0] = input[0]; output[1] = input[1]; output[2] = input[2]; input = (GLushort*) (((GLubyte*) input) + stride); output = (GLfloat*) (((GLubyte*) output) + sizeof(VertexExtra)); } } static void _readVertexData3ui3f(const GLuint* input, GLuint count, GLubyte stride, GLfloat* output) { ITERATE(count) { output[0] = input[0]; output[1] = input[1]; output[2] = input[2]; input = (GLuint*) (((GLubyte*) input) + stride); output = (float*) (((GLubyte*) output) + sizeof(Vertex)); } } static void _readVertexData3ui3fVE(const GLuint* input, GLuint count, GLubyte stride, GLfloat* output) { ITERATE(count) { output[0] = input[0]; output[1] = input[1]; output[2] = input[2]; input = (GLuint*) (((GLubyte*) input) + stride); output = (GLfloat*) (((GLubyte*) output) + sizeof(VertexExtra)); } } static void _readVertexData3ub3f(const GLubyte* input, GLuint count, GLubyte stride, float* output) { const float ONE_OVER_TWO_FIVE_FIVE = 1.0f / 255.0f; ITERATE(count) { output[0] = input[0] * ONE_OVER_TWO_FIVE_FIVE; output[1] = input[1] * ONE_OVER_TWO_FIVE_FIVE; output[2] = input[2] * ONE_OVER_TWO_FIVE_FIVE; input += stride; output = (float*) (((GLubyte*) output) + sizeof(Vertex)); } } static void _readVertexData3ub3fVE(const GLubyte* input, GLuint count, GLubyte stride, GLfloat* output) { const float ONE_OVER_TWO_FIVE_FIVE = 1.0f / 255.0f; ITERATE(count) { output[0] = input[0] * ONE_OVER_TWO_FIVE_FIVE; output[1] = input[1] * ONE_OVER_TWO_FIVE_FIVE; output[2] = input[2] * ONE_OVER_TWO_FIVE_FIVE; input += stride; output = (GLfloat*) (((GLubyte*) output) + sizeof(VertexExtra)); } } static void _readVertexData2f2f(const float* input, GLuint count, GLubyte stride, float* output) { ITERATE(count) { output[0] = input[0]; output[1] = input[1]; input = (float*) (((GLubyte*) input) + stride); output = (float*) (((GLubyte*) output) + sizeof(Vertex)); } } static void _readVertexData2f2fVE(const float* input, GLuint count, GLubyte stride, GLfloat* output) { ITERATE(count) { output[0] = input[0]; output[1] = input[1]; input = (float*) (((GLubyte*) input) + stride); output = (GLfloat*) (((GLubyte*) output) + sizeof(VertexExtra)); } } static void _readVertexData2f3f(const float* input, GLuint count, GLubyte stride, float* output) { ITERATE(count) { output[0] = input[0]; output[1] = input[1]; output[2] = 0.0f; input = (float*) (((GLubyte*) input) + stride); output = (float*) (((GLubyte*) output) + sizeof(Vertex)); } } static void _readVertexData2ub3f(const GLubyte* input, GLuint count, GLubyte stride, float* output) { const float ONE_OVER_TWO_FIVE_FIVE = 1.0f / 255.0f; ITERATE(count) { output[0] = input[0] * ONE_OVER_TWO_FIVE_FIVE; output[1] = input[1] * ONE_OVER_TWO_FIVE_FIVE; output[2] = 0.0f; input += stride; output = (float*) (((GLubyte*) output) + sizeof(Vertex)); } } static void _readVertexData2us3f(const GLushort* input, GLuint count, GLubyte stride, float* output) { ITERATE(count) { output[0] = input[0]; output[1] = input[1]; output[2] = 0.0f; input = (GLushort*) (((GLubyte*) input) + stride); output = (float*) (((GLubyte*) output) + sizeof(Vertex)); } } static void _readVertexData2us2f(const GLushort* input, GLuint count, GLubyte stride, float* output) { ITERATE(count) { output[0] = input[0]; output[1] = input[1]; input = (GLushort*) (((GLubyte*) input) + stride); output = (float*) (((GLubyte*) output) + sizeof(Vertex)); } } static void _readVertexData2us2fVE(const GLushort* input, GLuint count, GLubyte stride, GLfloat* output) { ITERATE(count) { output[0] = input[0]; output[1] = input[1]; input = (GLushort*) (((GLubyte*) input) + stride); output = (GLfloat*) (((GLubyte*) output) + sizeof(VertexExtra)); } } static void _readVertexData2ui2f(const GLuint* input, GLuint count, GLubyte stride, float* output) { ITERATE(count) { output[0] = input[0]; output[1] = input[1]; input = (GLuint*) (((GLubyte*) input) + stride); output = (float*) (((GLubyte*) output) + sizeof(Vertex)); } } static void _readVertexData2ui2fVE(const GLuint* input, GLuint count, GLubyte stride, GLfloat* output) { ITERATE(count) { output[0] = input[0]; output[1] = input[1]; input = (GLuint*) (((GLubyte*) input) + stride); output = (GLfloat*) (((GLubyte*) output) + sizeof(VertexExtra)); } } static void _readVertexData2ub2f(const GLubyte* input, GLuint count, GLubyte stride, float* output) { const float ONE_OVER_TWO_FIVE_FIVE = 1.0f / 255.0f; ITERATE(count) { output[0] = input[0] * ONE_OVER_TWO_FIVE_FIVE; output[1] = input[1] * ONE_OVER_TWO_FIVE_FIVE; input = (((GLubyte*) input) + stride); output = (float*) (((GLubyte*) output) + sizeof(Vertex)); } } static void _readVertexData2ub2fVE(const GLubyte* input, GLuint count, GLubyte stride, GLfloat* output) { const float ONE_OVER_TWO_FIVE_FIVE = 1.0f / 255.0f; ITERATE(count) { output[0] = input[0] * ONE_OVER_TWO_FIVE_FIVE; output[1] = input[1] * ONE_OVER_TWO_FIVE_FIVE; input = (((GLubyte*) input) + stride); output = (GLfloat*) (((GLubyte*) output) + sizeof(VertexExtra)); } } static void _readVertexData2ui3f(const GLuint* input, GLuint count, GLubyte stride, float* output) { ITERATE(count) { output[0] = input[0]; output[1] = input[1]; output[2] = 0.0f; input = (GLuint*) (((GLubyte*) input) + stride); output = (float*) (((GLubyte*) output) + sizeof(Vertex)); } } static void _readVertexData4ubARGB(const GLubyte* input, GLuint count, GLubyte stride, GLubyte* output) { ITERATE(count) { output[R8IDX] = input[0]; output[G8IDX] = input[1]; output[B8IDX] = input[2]; output[A8IDX] = input[3]; input += stride; output += sizeof(Vertex); } } static void _readVertexData4fARGB(const float* input, GLuint count, GLubyte stride, GLubyte* output) { ITERATE(count) { output[R8IDX] = (GLubyte) clamp(input[0] * 255.0f, 0, 255); output[G8IDX] = (GLubyte) clamp(input[1] * 255.0f, 0, 255); output[B8IDX] = (GLubyte) clamp(input[2] * 255.0f, 0, 255); output[A8IDX] = (GLubyte) clamp(input[3] * 255.0f, 0, 255); input = (float*) (((GLubyte*) input) + stride); output += sizeof(Vertex); } } static void _readVertexData3fARGB(const float* input, GLuint count, GLubyte stride, GLubyte* output) { ITERATE(count) { output[R8IDX] = (GLubyte) clamp(input[0] * 255.0f, 0, 255); output[G8IDX] = (GLubyte) clamp(input[1] * 255.0f, 0, 255); output[B8IDX] = (GLubyte) clamp(input[2] * 255.0f, 0, 255); output[A8IDX] = 1.0f; input = (float*) (((GLubyte*) input) + stride); output = (GLubyte*) (((GLubyte*) output) + sizeof(Vertex)); } } static void _readVertexData3ubARGB(const GLubyte* input, GLuint count, GLubyte stride, GLubyte* output) { ITERATE(count) { output[R8IDX] = input[0]; output[G8IDX] = input[1]; output[B8IDX] = input[2]; output[A8IDX] = 1.0f; input = (((GLubyte*) input) + stride); output = (GLubyte*) (((GLubyte*) output) + sizeof(Vertex)); } } static void _readVertexData4ubRevARGB(const GLubyte* input, GLuint count, GLubyte stride, GLubyte* output) { ITERATE(count) { output[B8IDX] = input[0]; output[G8IDX] = input[1]; output[R8IDX] = input[2]; output[A8IDX] = input[3]; input += stride; output += sizeof(Vertex); } } static void _readVertexData4fRevARGB(const float* input, GLuint count, GLubyte stride, GLubyte* output) { ITERATE(count) { output[0] = (GLubyte) clamp(input[0] * 255.0f, 0, 255); output[1] = (GLubyte) clamp(input[1] * 255.0f, 0, 255); output[2] = (GLubyte) clamp(input[2] * 255.0f, 0, 255); output[3] = (GLubyte) clamp(input[3] * 255.0f, 0, 255); input = (float*) (((GLubyte*) input) + stride); output += sizeof(Vertex); } } static void _fillWithNegZVE(GLuint count, GLfloat* output) { ITERATE(count) { output[0] = output[1] = 0.0f; output[2] = -1.0f; output = (GLfloat*) (((GLubyte*) output) + sizeof(VertexExtra)); } } static void _fillWhiteARGB(GLuint count, GLubyte* output) { ITERATE(count) { output[R8IDX] = 255; output[G8IDX] = 255; output[B8IDX] = 255; output[A8IDX] = 255; output += sizeof(Vertex); } } static void _fillZero2f(GLuint count, GLfloat* output) { ITERATE(count) { output[0] = output[1] = 0.0f; output = (GLfloat*) (((GLubyte*) output) + sizeof(Vertex)); } } static void _fillZero2fVE(GLuint count, GLfloat* output) { ITERATE(count) { output[0] = output[1] = 0.0f; output = (GLfloat*) (((GLubyte*) output) + sizeof(VertexExtra)); } } static void _readVertexData3usARGB(const GLushort* input, GLuint count, GLubyte stride, GLubyte* output) { assert(0 && "Not Implemented"); } static void _readVertexData3uiARGB(const GLuint* input, GLuint count, GLubyte stride, GLubyte* output) { assert(0 && "Not Implemented"); } static void _readVertexData4usARGB(const GLushort* input, GLuint count, GLubyte stride, GLubyte* output) { assert(0 && "Not Implemented"); } static void _readVertexData4uiARGB(const GLuint* input, GLuint count, GLubyte stride, GLubyte* output) { assert(0 && "Not Implemented"); } static void _readVertexData4usRevARGB(const GLushort* input, GLuint count, GLubyte stride, GLubyte* output) { assert(0 && "Not Implemented"); } static void _readVertexData4uiRevARGB(const GLuint* input, GLuint count, GLubyte stride, GLubyte* output) { assert(0 && "Not Implemented"); } GLuint* _glGetEnabledAttributes() { return &ENABLED_VERTEX_ATTRIBUTES; } AttribPointer* _glGetVertexAttribPointer() { return &VERTEX_POINTER; } AttribPointer* _glGetDiffuseAttribPointer() { return &DIFFUSE_POINTER; } AttribPointer* _glGetNormalAttribPointer() { return &NORMAL_POINTER; } AttribPointer* _glGetUVAttribPointer() { return &UV_POINTER; } AttribPointer* _glGetSTAttribPointer() { return &ST_POINTER; } typedef GLuint (*IndexParseFunc)(const GLubyte* in); static inline GLuint _parseUByteIndex(const GLubyte* in) { return (GLuint) *in; } static inline GLuint _parseUIntIndex(const GLubyte* in) { return *((GLuint*) in); } static inline GLuint _parseUShortIndex(const GLubyte* in) { return *((GLshort*) in); } static inline IndexParseFunc _calcParseIndexFunc(GLenum type) { switch(type) { case GL_UNSIGNED_BYTE: return &_parseUByteIndex; break; case GL_UNSIGNED_INT: return &_parseUIntIndex; break; case GL_UNSIGNED_SHORT: default: break; } return &_parseUShortIndex; } /* There was a bug in this macro that shipped with Kos * which has now been fixed. But just in case... */ #undef mat_trans_single3_nodiv #define mat_trans_single3_nodiv(x, y, z) { \ register float __x __asm__("fr12") = (x); \ register float __y __asm__("fr13") = (y); \ register float __z __asm__("fr14") = (z); \ __asm__ __volatile__( \ "fldi1 fr15\n" \ "ftrv xmtrx, fv12\n" \ : "=f" (__x), "=f" (__y), "=f" (__z) \ : "0" (__x), "1" (__y), "2" (__z) \ : "fr15"); \ x = __x; y = __y; z = __z; \ } /* FIXME: Is this right? Shouldn't it be fr12->15? */ #undef mat_trans_normal3 #define mat_trans_normal3(x, y, z) { \ register float __x __asm__("fr8") = (x); \ register float __y __asm__("fr9") = (y); \ register float __z __asm__("fr10") = (z); \ __asm__ __volatile__( \ "fldi0 fr11\n" \ "ftrv xmtrx, fv8\n" \ : "=f" (__x), "=f" (__y), "=f" (__z) \ : "0" (__x), "1" (__y), "2" (__z) \ : "fr11"); \ x = __x; y = __y; z = __z; \ } static inline void transformToEyeSpace(GLfloat* point) { _glMatrixLoadModelView(); mat_trans_single3_nodiv(point[0], point[1], point[2]); } static inline void transformNormalToEyeSpace(GLfloat* normal) { _glMatrixLoadNormal(); mat_trans_normal3(normal[0], normal[1], normal[2]); } PVRHeader* _glSubmissionTargetHeader(SubmissionTarget* target) { assert(target->header_offset < target->output->vector.size); return aligned_vector_at(&target->output->vector, target->header_offset); } Vertex* _glSubmissionTargetStart(SubmissionTarget* target) { assert(target->start_offset < target->output->vector.size); return aligned_vector_at(&target->output->vector, target->start_offset); } Vertex* _glSubmissionTargetEnd(SubmissionTarget* target) { return _glSubmissionTargetStart(target) + target->count; } static inline void genTriangles(Vertex* output, GLuint count) { const GLuint tris = count / 3; Vertex* it = output + 2; ITERATE(tris) { it->flags = PVR_CMD_VERTEX_EOL; it += 3; } } static inline void genQuads(Vertex* output, GLuint count) { const GLuint quads = count / 4; Vertex* final = output + 3; ITERATE(quads) { swapVertex((final - 1), final); final->flags = PVR_CMD_VERTEX_EOL; final += 4; } } static void genTriangleStrip(Vertex* output, GLuint count) { output[count - 1].flags = PVR_CMD_VERTEX_EOL; } static void genTriangleFan(Vertex* output, GLuint count) { assert(count <= 255); Vertex* dst = output + (((count - 2) * 3) - 1); Vertex* src = output + (count - 1); GLubyte i = count - 2; while(i--) { *dst = *src--; (*dst--).flags = PVR_CMD_VERTEX_EOL; *dst-- = *src; *dst-- = *output; } } static inline void _readPositionData(const GLuint first, const GLuint count, Vertex* output) { const GLubyte vstride = (VERTEX_POINTER.stride) ? VERTEX_POINTER.stride : VERTEX_POINTER.size * byte_size(VERTEX_POINTER.type); const void* vptr = ((GLubyte*) VERTEX_POINTER.ptr + (first * vstride)); if(VERTEX_POINTER.size == 3) { switch(VERTEX_POINTER.type) { case GL_DOUBLE: case GL_FLOAT: _readVertexData3f3f(vptr, count, vstride, output[0].xyz); break; case GL_BYTE: case GL_UNSIGNED_BYTE: _readVertexData3ub3f(vptr, count, vstride, output[0].xyz); break; case GL_SHORT: case GL_UNSIGNED_SHORT: _readVertexData3us3f(vptr, count, vstride, output[0].xyz); break; case GL_INT: case GL_UNSIGNED_INT: _readVertexData3ui3f(vptr, count, vstride, output[0].xyz); break; default: assert(0 && "Not Implemented"); } } else if(VERTEX_POINTER.size == 2) { switch(VERTEX_POINTER.type) { case GL_DOUBLE: case GL_FLOAT: _readVertexData2f3f(vptr, count, vstride, output[0].xyz); break; case GL_BYTE: case GL_UNSIGNED_BYTE: _readVertexData2ub3f(vptr, count, vstride, output[0].xyz); break; case GL_SHORT: case GL_UNSIGNED_SHORT: _readVertexData2us3f(vptr, count, vstride, output[0].xyz); break; case GL_INT: case GL_UNSIGNED_INT: _readVertexData2ui3f(vptr, count, vstride, output[0].xyz); break; default: assert(0 && "Not Implemented"); } } else { assert(0 && "Not Implemented"); } } static inline void _readUVData(const GLuint first, const GLuint count, Vertex* output) { if((ENABLED_VERTEX_ATTRIBUTES & UV_ENABLED_FLAG) != UV_ENABLED_FLAG) { _fillZero2f(count, output->uv); return; } const GLubyte uvstride = (UV_POINTER.stride) ? UV_POINTER.stride : UV_POINTER.size * byte_size(UV_POINTER.type); const void* uvptr = ((GLubyte*) UV_POINTER.ptr + (first * uvstride)); if(UV_POINTER.size == 2) { switch(UV_POINTER.type) { case GL_DOUBLE: case GL_FLOAT: _readVertexData2f2f(uvptr, count, uvstride, output[0].uv); break; case GL_BYTE: case GL_UNSIGNED_BYTE: _readVertexData2ub2f(uvptr, count, uvstride, output[0].uv); break; case GL_SHORT: case GL_UNSIGNED_SHORT: _readVertexData2us2f(uvptr, count, uvstride, output[0].uv); break; case GL_INT: case GL_UNSIGNED_INT: _readVertexData2ui2f(uvptr, count, uvstride, output[0].uv); break; default: assert(0 && "Not Implemented"); } } else { assert(0 && "Not Implemented"); } } static inline void _readSTData(const GLuint first, const GLuint count, VertexExtra* extra) { if((ENABLED_VERTEX_ATTRIBUTES & ST_ENABLED_FLAG) != ST_ENABLED_FLAG) { _fillZero2fVE(count, extra->st); return; } const GLubyte ststride = (ST_POINTER.stride) ? ST_POINTER.stride : ST_POINTER.size * byte_size(ST_POINTER.type); const void* stptr = ((GLubyte*) ST_POINTER.ptr + (first * ststride)); if(ST_POINTER.size == 2) { switch(ST_POINTER.type) { case GL_DOUBLE: case GL_FLOAT: _readVertexData2f2fVE(stptr, count, ststride, extra->st); break; case GL_BYTE: case GL_UNSIGNED_BYTE: _readVertexData2ub2fVE(stptr, count, ststride, extra->st); break; case GL_SHORT: case GL_UNSIGNED_SHORT: _readVertexData2us2fVE(stptr, count, ststride, extra->st); break; case GL_INT: case GL_UNSIGNED_INT: _readVertexData2ui2fVE(stptr, count, ststride, extra->st); break; default: assert(0 && "Not Implemented"); } } else { assert(0 && "Not Implemented"); } } static inline void _readNormalData(const GLuint first, const GLuint count, VertexExtra* extra) { if((ENABLED_VERTEX_ATTRIBUTES & NORMAL_ENABLED_FLAG) != NORMAL_ENABLED_FLAG) { _fillWithNegZVE(count, extra->nxyz); return; } const GLuint nstride = (NORMAL_POINTER.stride) ? NORMAL_POINTER.stride : NORMAL_POINTER.size * byte_size(NORMAL_POINTER.type); const void* nptr = ((GLubyte*) NORMAL_POINTER.ptr + (first * nstride)); if(NORMAL_POINTER.size == 3 || NORMAL_POINTER.type == GL_INT_2_10_10_10_REV) { switch(NORMAL_POINTER.type) { case GL_DOUBLE: case GL_FLOAT: _readVertexData3f3fVE(nptr, count, nstride, extra->nxyz); break; case GL_BYTE: case GL_UNSIGNED_BYTE: _readVertexData3ub3fVE(nptr, count, nstride, extra->nxyz); break; case GL_SHORT: case GL_UNSIGNED_SHORT: _readVertexData3us3fVE(nptr, count, nstride, extra->nxyz); break; case GL_INT: case GL_UNSIGNED_INT: _readVertexData3ui3fVE(nptr, count, nstride, extra->nxyz); break; case GL_INT_2_10_10_10_REV: _readVertexData1i3f(nptr, count, nstride, extra->nxyz); break; default: assert(0 && "Not Implemented"); } } else { assert(0 && "Not Implemented"); } if(_glIsNormalizeEnabled()) { GLubyte* ptr = (GLubyte*) extra->nxyz; GLfloat l; ITERATE(count) { GLfloat* n = (GLfloat*) ptr; vec3f_length(n[0], n[1], n[2], l); l = 1.0f / l; n[0] *= l; n[1] *= l; n[2] *= l; ptr += sizeof(VertexExtra); } } } static inline void _readDiffuseData(const GLuint first, const GLuint count, Vertex* output) { if((ENABLED_VERTEX_ATTRIBUTES & DIFFUSE_ENABLED_FLAG) != DIFFUSE_ENABLED_FLAG) { /* Just fill the whole thing white if the attribute is disabled */ _fillWhiteARGB(count, output[0].bgra); return; } const GLubyte cstride = (DIFFUSE_POINTER.stride) ? DIFFUSE_POINTER.stride : DIFFUSE_POINTER.size * byte_size(DIFFUSE_POINTER.type); const void* cptr = ((GLubyte*) DIFFUSE_POINTER.ptr) + (first * cstride); if(DIFFUSE_POINTER.size == 3) { switch(DIFFUSE_POINTER.type) { case GL_DOUBLE: case GL_FLOAT: _readVertexData3fARGB(cptr, count, cstride, output[0].bgra); break; case GL_BYTE: case GL_UNSIGNED_BYTE: _readVertexData3ubARGB(cptr, count, cstride, output[0].bgra); break; case GL_SHORT: case GL_UNSIGNED_SHORT: _readVertexData3usARGB(cptr, count, cstride, output[0].bgra); break; case GL_INT: case GL_UNSIGNED_INT: _readVertexData3uiARGB(cptr, count, cstride, output[0].bgra); break; default: assert(0 && "Not Implemented"); } } else if(DIFFUSE_POINTER.size == 4) { switch(DIFFUSE_POINTER.type) { case GL_DOUBLE: case GL_FLOAT: _readVertexData4fARGB(cptr, count, cstride, output[0].bgra); break; case GL_BYTE: case GL_UNSIGNED_BYTE: _readVertexData4ubARGB(cptr, count, cstride, output[0].bgra); break; case GL_SHORT: case GL_UNSIGNED_SHORT: _readVertexData4usARGB(cptr, count, cstride, output[0].bgra); break; case GL_INT: case GL_UNSIGNED_INT: _readVertexData4uiARGB(cptr, count, cstride, output[0].bgra); break; default: assert(0 && "Not Implemented"); } } else if(DIFFUSE_POINTER.size == GL_BGRA) { switch(DIFFUSE_POINTER.type) { case GL_DOUBLE: case GL_FLOAT: _readVertexData4fRevARGB(cptr, count, cstride, output[0].bgra); break; case GL_BYTE: case GL_UNSIGNED_BYTE: _readVertexData4ubRevARGB(cptr, count, cstride, output[0].bgra); break; case GL_SHORT: case GL_UNSIGNED_SHORT: _readVertexData4usRevARGB(cptr, count, cstride, output[0].bgra); break; case GL_INT: case GL_UNSIGNED_INT: _readVertexData4uiRevARGB(cptr, count, cstride, output[0].bgra); break; default: assert(0 && "Not Implemented"); } }else { assert(0 && "Not Implemented"); } } static void generate(SubmissionTarget* target, const GLenum mode, const GLsizei first, const GLuint count, const GLubyte* indices, const GLenum type, const GLboolean doTexture, const GLboolean doMultitexture, const GLboolean doLighting) { /* Read from the client buffers and generate an array of ClipVertices */ TRACE(); static const uint32_t FAST_PATH_BYTE_SIZE = (sizeof(GLfloat) * 3) + (sizeof(GLfloat) * 2) + (sizeof(GLubyte) * 4); const GLsizei istride = byte_size(type); if(!indices) { profiler_push(__func__); Vertex* start = _glSubmissionTargetStart(target); if(FAST_PATH_ENABLED) { /* Copy the pos, uv and color directly in one go */ const GLubyte* pos = VERTEX_POINTER.ptr; Vertex* it = start; ITERATE(count) { it->flags = PVR_CMD_VERTEX; memcpy(it->xyz, pos, FAST_PATH_BYTE_SIZE); it++; pos += VERTEX_POINTER.stride; } } else { _readPositionData(first, count, start); profiler_checkpoint("positions"); _readDiffuseData(first, count, start); profiler_checkpoint("diffuse"); if(doTexture) _readUVData(first, count, start); Vertex* it = _glSubmissionTargetStart(target); ITERATE(count) { it->flags = PVR_CMD_VERTEX; ++it; } } VertexExtra* ve = aligned_vector_at(target->extras, 0); if(doLighting) _readNormalData(first, count, ve); if(doTexture && doMultitexture) _readSTData(first, count, ve); profiler_checkpoint("others"); // Drawing arrays switch(mode) { case GL_TRIANGLES: genTriangles(start, count); break; case GL_QUADS: genQuads(start, count); break; case GL_TRIANGLE_FAN: genTriangleFan(start, count); break; case GL_TRIANGLE_STRIP: genTriangleStrip(_glSubmissionTargetStart(target), count); break; default: fprintf(stderr, "Unhandled mode %d\n", (int) mode); assert(0 && "Not Implemented"); } profiler_checkpoint("quads"); profiler_pop(); } else { const IndexParseFunc indexFunc = _calcParseIndexFunc(type); GLuint j; const GLubyte* idx = indices; Vertex* vertices = _glSubmissionTargetStart(target); VertexExtra* extras = aligned_vector_at(target->extras, 0); if(FAST_PATH_ENABLED) { typedef struct FastPath { float xyz[3]; float uv[2]; uint8_t bgra[4]; } FastPath; GLboolean readST = doTexture && doMultitexture; ITERATE(count) { j = indexFunc(idx); vertices->flags = PVR_CMD_VERTEX; FastPath* srcV = (FastPath*) ((uint8_t*) VERTEX_POINTER.ptr + (VERTEX_POINTER.stride * j)); FastPath* dst = (FastPath*) vertices->xyz; *dst = *srcV; if(doLighting) _readNormalData(j, 1, extras); if(readST) _readSTData(j, 1, extras); ++vertices; ++extras; idx += istride; } } else { ITERATE(count) { j = indexFunc(idx); vertices->flags = PVR_CMD_VERTEX; _readPositionData(j, 1, vertices); _readDiffuseData(j, 1, vertices); if(doTexture) _readUVData(j, 1, vertices); if(doLighting) _readNormalData(j, 1, extras); if(doTexture && doMultitexture) _readSTData(j, 1, extras); ++vertices; ++extras; idx += istride; } } Vertex* it = _glSubmissionTargetStart(target); // Drawing arrays switch(mode) { case GL_TRIANGLES: genTriangles(it, count); break; case GL_QUADS: genQuads(it, count); break; case GL_TRIANGLE_FAN: genTriangleFan(it, count); break; case GL_TRIANGLE_STRIP: genTriangleStrip(it, count); break; default: assert(0 && "Not Implemented"); } } } static void transform(SubmissionTarget* target) { TRACE(); /* Perform modelview transform, storing W */ Vertex* vertex = _glSubmissionTargetStart(target); _glApplyRenderMatrix(); /* Apply the Render Matrix Stack */ ITERATE(target->count) { register float __x __asm__("fr12") = (vertex->xyz[0]); register float __y __asm__("fr13") = (vertex->xyz[1]); register float __z __asm__("fr14") = (vertex->xyz[2]); register float __w __asm__("fr15") = (vertex->w); __asm__ __volatile__( "fldi1 fr15\n" "ftrv xmtrx,fv12\n" : "=f" (__x), "=f" (__y), "=f" (__z), "=f" (__w) : "0" (__x), "1" (__y), "2" (__z), "3" (__w) ); vertex->xyz[0] = __x; vertex->xyz[1] = __y; vertex->xyz[2] = __z; vertex->w = __w; ++vertex; } } static void clip(SubmissionTarget* target) { TRACE(); /* Perform clipping, generating new vertices as necessary */ _glClipTriangleStrip(target, _glGetShadeModel() == GL_FLAT); /* Reset the count now that we may have added vertices */ target->count = target->output->vector.size - target->start_offset; } static void mat_transform3(const float* xyz, const float* xyzOut, const uint32_t count, const uint32_t inStride, const uint32_t outStride) { uint8_t* dataIn = (uint8_t*) xyz; uint8_t* dataOut = (uint8_t*) xyzOut; ITERATE(count) { float* in = (float*) dataIn; float* out = (float*) dataOut; mat_trans_single3_nodiv_nomod(in[0], in[1], in[2], out[0], out[1], out[2]); dataIn += inStride; dataOut += outStride; } } static void mat_transform_normal3(const float* xyz, const float* xyzOut, const uint32_t count, const uint32_t inStride, const uint32_t outStride) { uint8_t* dataIn = (uint8_t*) xyz; uint8_t* dataOut = (uint8_t*) xyzOut; ITERATE(count) { float* in = (float*) dataIn; float* out = (float*) dataOut; mat_trans_normal3_nomod(in[0], in[1], in[2], out[0], out[1], out[2]); dataIn += inStride; dataOut += outStride; } } static void light(SubmissionTarget* target) { if(!_glIsLightingEnabled()) { return; } static AlignedVector* eye_space_data = NULL; if(!eye_space_data) { eye_space_data = (AlignedVector*) malloc(sizeof(AlignedVector)); aligned_vector_init(eye_space_data, sizeof(EyeSpaceData)); } aligned_vector_resize(eye_space_data, target->count); /* Perform lighting calculations and manipulate the colour */ Vertex* vertex = _glSubmissionTargetStart(target); VertexExtra* extra = aligned_vector_at(target->extras, 0); EyeSpaceData* eye_space = (EyeSpaceData*) eye_space_data->data; _glMatrixLoadModelView(); mat_transform3(vertex->xyz, eye_space->xyz, target->count, sizeof(Vertex), sizeof(EyeSpaceData)); _glMatrixLoadNormal(); mat_transform_normal3(extra->nxyz, eye_space->n, target->count, sizeof(VertexExtra), sizeof(EyeSpaceData)); EyeSpaceData* ES = aligned_vector_at(eye_space_data, 0); _glPerformLighting(vertex, ES, target->count); } static void divide(SubmissionTarget* target) { TRACE(); /* Perform perspective divide on each vertex */ Vertex* vertex = _glSubmissionTargetStart(target); ITERATE(target->count) { float f = 1.0f / vertex->w; vertex->xyz[0] *= f; vertex->xyz[1] *= f; vertex->xyz[2] = 1.0 - ((DEPTH_RANGE_MULTIPLIER_L * vertex->xyz[2] * f) + DEPTH_RANGE_MULTIPLIER_H); ++vertex; } } static void push(PVRHeader* header, GLboolean multiTextureHeader, PolyList* activePolyList, GLshort textureUnit) { TRACE(); // Compile the header pvr_poly_cxt_t cxt = *_glGetPVRContext(); cxt.list_type = activePolyList->list_type; _glUpdatePVRTextureContext(&cxt, textureUnit); if(multiTextureHeader) { assert(cxt.list_type == PVR_LIST_TR_POLY); cxt.gen.alpha = PVR_ALPHA_ENABLE; cxt.txr.alpha = PVR_TXRALPHA_ENABLE; cxt.blend.src = PVR_BLEND_ZERO; cxt.blend.dst = PVR_BLEND_DESTCOLOR; cxt.depth.comparison = PVR_DEPTHCMP_EQUAL; } pvr_poly_compile(&header->hdr, &cxt); /* Post-process the vertex list */ /* * This is currently unnecessary. aligned_vector memsets the allocated objects * to zero, and we don't touch oargb, also, we don't *enable* oargb yet in the * pvr header so it should be ignored anyway. If this ever becomes a problem, * uncomment this. ClipVertex* vout = output; const ClipVertex* end = output + count; while(vout < end) { vout->oargb = 0; } */ } #define DEBUG_CLIPPING 0 static void submitVertices(GLenum mode, GLsizei first, GLuint count, GLenum type, const GLvoid* indices) { TRACE(); /* Do nothing if vertices aren't enabled */ if(!(ENABLED_VERTEX_ATTRIBUTES & VERTEX_ENABLED_FLAG)) { return; } /* No vertices? Do nothing */ if(!count) { return; } if(mode == GL_LINE_STRIP || mode == GL_LINES) { fprintf(stderr, "Line drawing is currently unsupported\n"); return; } static SubmissionTarget* target = NULL; static AlignedVector extras; /* Initialization of the target and extras */ if(!target) { target = (SubmissionTarget*) malloc(sizeof(SubmissionTarget)); target->extras = NULL; target->count = 0; target->output = NULL; target->header_offset = target->start_offset = 0; aligned_vector_init(&extras, sizeof(VertexExtra)); target->extras = &extras; } GLboolean doMultitexture, doTexture, doLighting; GLint activeTexture; glGetIntegerv(GL_ACTIVE_TEXTURE_ARB, &activeTexture); glActiveTextureARB(GL_TEXTURE0); glGetBooleanv(GL_TEXTURE_2D, &doTexture); glActiveTextureARB(GL_TEXTURE1); glGetBooleanv(GL_TEXTURE_2D, &doMultitexture); doLighting = _glIsLightingEnabled(); glActiveTextureARB(activeTexture); profiler_push(__func__); /* Polygons are treated as triangle fans, the only time this would be a * problem is if we supported glPolygonMode(..., GL_LINE) but we don't. * We optimise the triangle and quad cases. */ if(mode == GL_POLYGON) { if(count == 3) { mode = GL_TRIANGLES; } else if(count == 4) { mode = GL_QUADS; } else { mode = GL_TRIANGLE_FAN; } } // We don't handle this any further, so just make sure we never pass it down */ assert(mode != GL_POLYGON); target->output = _glActivePolyList(); target->count = (mode == GL_TRIANGLE_FAN) ? ((count - 2) * 3) : count; target->header_offset = target->output->vector.size; target->start_offset = target->header_offset + 1; assert(target->count); /* Make sure we have enough room for all the "extra" data */ aligned_vector_resize(&extras, target->count); /* Make room for the vertices and header */ aligned_vector_extend(&target->output->vector, target->count + 1); profiler_checkpoint("allocate"); generate(target, mode, first, count, (GLubyte*) indices, type, doTexture, doMultitexture, doLighting); profiler_checkpoint("generate"); if(doLighting) { light(target); } profiler_checkpoint("light"); transform(target); profiler_checkpoint("transform"); if(_glIsClippingEnabled()) { #if DEBUG_CLIPPING uint32_t i = 0; fprintf(stderr, "=========\n"); for(i = offset; i < activeList->vector.size; ++i) { ClipVertex* v = aligned_vector_at(&activeList->vector, i); if(v->flags == 0xe0000000 || v->flags == 0xf0000000) { fprintf(stderr, "(%f, %f, %f) -> %x\n", v->xyz[0], v->xyz[1], v->xyz[2], v->flags); } else { fprintf(stderr, "%x\n", *((uint32_t*)v)); } } #endif clip(target); assert(extras.size == target->count); #if DEBUG_CLIPPING fprintf(stderr, "--------\n"); for(i = offset; i < activeList->vector.size; ++i) { ClipVertex* v = aligned_vector_at(&activeList->vector, i); if(v->flags == 0xe0000000 || v->flags == 0xf0000000) { fprintf(stderr, "(%f, %f, %f) -> %x\n", v->xyz[0], v->xyz[1], v->xyz[2], v->flags); } else { fprintf(stderr, "%x\n", *((uint32_t*)v)); } } #endif } profiler_checkpoint("clip"); divide(target); profiler_checkpoint("divide"); push(_glSubmissionTargetHeader(target), GL_FALSE, target->output, 0); profiler_checkpoint("push"); /* Now, if multitexturing is enabled, we want to send exactly the same vertices again, except: - We want to enable blending, and send them to the TR list - We want to set the depth func to GL_EQUAL - We want to set the second texture ID - We want to set the uv coordinates to the passed st ones */ if(!doMultitexture) { /* Multitexture actively disabled */ profiler_pop(); return; } TextureObject* texture1 = _glGetTexture1(); /* Multitexture implicitly disabled */ if(!texture1 || ((ENABLED_VERTEX_ATTRIBUTES & ST_ENABLED_FLAG) != ST_ENABLED_FLAG)) { /* Multitexture actively disabled */ profiler_pop(); return; } /* Push back a copy of the list to the transparent poly list, including the header (hence the + 1) */ Vertex* vertex = aligned_vector_push_back( &_glTransparentPolyList()->vector, (Vertex*) _glSubmissionTargetHeader(target), target->count + 1 ); assert(vertex); PVRHeader* mtHeader = (PVRHeader*) vertex++; /* Replace the UV coordinates with the ST ones */ VertexExtra* ve = aligned_vector_at(target->extras, 0); ITERATE(target->count) { vertex->uv[0] = ve->st[0]; vertex->uv[1] = ve->st[1]; ++vertex; ++ve; } /* Send the buffer again to the transparent list */ push(mtHeader, GL_TRUE, _glTransparentPolyList(), 1); profiler_pop(); } void APIENTRY glDrawElements(GLenum mode, GLsizei count, GLenum type, const GLvoid* indices) { TRACE(); if(_glCheckImmediateModeInactive(__func__)) { return; } submitVertices(mode, 0, count, type, indices); } void APIENTRY glDrawArrays(GLenum mode, GLint first, GLsizei count) { TRACE(); if(_glCheckImmediateModeInactive(__func__)) { return; } submitVertices(mode, first, count, GL_UNSIGNED_INT, NULL); } void APIENTRY glEnableClientState(GLenum cap) { TRACE(); switch(cap) { case GL_VERTEX_ARRAY: ENABLED_VERTEX_ATTRIBUTES |= VERTEX_ENABLED_FLAG; break; case GL_COLOR_ARRAY: ENABLED_VERTEX_ATTRIBUTES |= DIFFUSE_ENABLED_FLAG; break; case GL_NORMAL_ARRAY: ENABLED_VERTEX_ATTRIBUTES |= NORMAL_ENABLED_FLAG; break; case GL_TEXTURE_COORD_ARRAY: (ACTIVE_CLIENT_TEXTURE) ? (ENABLED_VERTEX_ATTRIBUTES |= ST_ENABLED_FLAG): (ENABLED_VERTEX_ATTRIBUTES |= UV_ENABLED_FLAG); break; default: _glKosThrowError(GL_INVALID_ENUM, __func__); } _glRecalcFastPath(); } void APIENTRY glDisableClientState(GLenum cap) { TRACE(); switch(cap) { case GL_VERTEX_ARRAY: ENABLED_VERTEX_ATTRIBUTES &= ~VERTEX_ENABLED_FLAG; break; case GL_COLOR_ARRAY: ENABLED_VERTEX_ATTRIBUTES &= ~DIFFUSE_ENABLED_FLAG; break; case GL_NORMAL_ARRAY: ENABLED_VERTEX_ATTRIBUTES &= ~NORMAL_ENABLED_FLAG; break; case GL_TEXTURE_COORD_ARRAY: (ACTIVE_CLIENT_TEXTURE) ? (ENABLED_VERTEX_ATTRIBUTES &= ~ST_ENABLED_FLAG): (ENABLED_VERTEX_ATTRIBUTES &= ~UV_ENABLED_FLAG); break; default: _glKosThrowError(GL_INVALID_ENUM, __func__); } _glRecalcFastPath(); } GLuint _glGetActiveClientTexture() { return ACTIVE_CLIENT_TEXTURE; } void APIENTRY glClientActiveTextureARB(GLenum texture) { TRACE(); if(texture < GL_TEXTURE0_ARB || texture > GL_TEXTURE0_ARB + MAX_TEXTURE_UNITS) { _glKosThrowError(GL_INVALID_ENUM, "glClientActiveTextureARB"); } if(_glKosHasError()) { _glKosPrintError(); return; } ACTIVE_CLIENT_TEXTURE = (texture == GL_TEXTURE1_ARB) ? 1 : 0; } GLboolean _glRecalcFastPath() { FAST_PATH_ENABLED = _glIsVertexDataFastPathCompatible(); return FAST_PATH_ENABLED; } void APIENTRY glTexCoordPointer(GLint size, GLenum type, GLsizei stride, const GLvoid * pointer) { TRACE(); if(size < 1 || size > 4) { _glKosThrowError(GL_INVALID_VALUE, __func__); _glKosPrintError(); return; } AttribPointer* tointer = (ACTIVE_CLIENT_TEXTURE == 0) ? &UV_POINTER : &ST_POINTER; tointer->ptr = pointer; tointer->stride = stride; tointer->type = type; tointer->size = size; _glRecalcFastPath(); } void APIENTRY glVertexPointer(GLint size, GLenum type, GLsizei stride, const GLvoid * pointer) { TRACE(); if(size < 2 || size > 4) { _glKosThrowError(GL_INVALID_VALUE, __func__); _glKosPrintError(); return; } VERTEX_POINTER.ptr = pointer; VERTEX_POINTER.stride = stride; VERTEX_POINTER.type = type; VERTEX_POINTER.size = size; _glRecalcFastPath(); } void APIENTRY glColorPointer(GLint size, GLenum type, GLsizei stride, const GLvoid * pointer) { TRACE(); if(size != 3 && size != 4 && size != GL_BGRA) { _glKosThrowError(GL_INVALID_VALUE, __func__); _glKosPrintError(); return; } DIFFUSE_POINTER.ptr = pointer; DIFFUSE_POINTER.stride = stride; DIFFUSE_POINTER.type = type; DIFFUSE_POINTER.size = size; _glRecalcFastPath(); } void APIENTRY glNormalPointer(GLenum type, GLsizei stride, const GLvoid * pointer) { TRACE(); NORMAL_POINTER.ptr = pointer; NORMAL_POINTER.stride = stride; NORMAL_POINTER.type = type; NORMAL_POINTER.size = (type == GL_INT_2_10_10_10_REV) ? 1 : 3; _glRecalcFastPath(); }